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Abstract— Layered space-time codes have been de-

signed to exploit the capacity advantage of multiple

antenna systems in Rayleigh fading environments. In

this paper, we present a new efficient detection algo-

rithm based on a sorted QR decomposition. It only

needs a fraction of computational effort compared

to the standard detection algorithm requiring multi-

ple calculations of the pseudo inverse of the channel

matrix. The derived algorithm is not restricted to

layered space-time architectures, but can generally

be used for detection in vector channel systems.
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I. Introduction

In a Rayleigh fading environment, multiple an-
tenna systems provide an enormous increase in ca-
pacity compared to single antenna systems [1]. Con-
sequently, multiple-input multiple-output (MIMO)
systems are predestined for high data rate wireless
communications. Space-Time codes are designed to
exploit this high capacity by using space as a second
dimension of coding [2, 3].

Layered space-time (LST) codes are a special kind
of space-time codes with the advantage of a feasi-
ble decoding complexity. The original D-BLAST
(Diagonal Bell Labs Layered Space Time) architec-
ture proposed by Foschini [4] uses a diagonally lay-
ered coding structure in which code blocks are dis-
persed across diagonals in space-time. Thereby, an
“averaged” channel which is the same for all lay-
ers is achieved and the probability of deep fades is
reduced. Due to the diagonal arrangement of the
code blocks, D-BLAST is not feasible for real time
implementations. A simplified version was proposed
in [5] and is known as V-BLAST (Vertical BLAST).
It associates each layer with a specific transmit an-
tenna wich leads to an easier detection and decoding
process. For detecting the layers, the multiple cal-
culation of the pseudo inverse of the channel matrix
is necessary.

In order to significantly reduce the computational
effort of detection, we introduce a new and very ef-
ficient way of detecting layered space-time codes.
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This approach utilizes an adjusted QR decomposi-
tion (QRD) by sorting the detection sequence due
to exchanging the columns of the channel matrix.
This new algorithm is compared to V-BLAST by
simulation results and by an estimation of the com-
putational effort.

The remainder of this paper is organized as fol-
lows. In section II, the MIMO system and the LST
architecture are described. In section III, V-BLAST
and a QRD based algorithm for detecting LST ar-
chitectures are reviewed. The new approach is in-
troduced in section IV and the performance of both
detection algorithms are compared in section V. In
section VI forward correction coding is added in
each layer and the computational effort of both de-
tecting algorithms is compared in section VII. A
summary and concluding remarks can be found in
section VIII.

II. System description

We consider the multi antenna system with nT

transmit and nR ≥ nT receive antennas shown in
Fig. 1. The data is demultiplexed in nT data sub-
streams of equal length (called layers). These sub-
streams are mapped into M -PSK or M -QAM sym-
bols c1, . . . , cnT

. Alternatively, a forward error cor-
rection (FEC) code can be used to encode the data
substreams before mapping. We will investigate the
application of FEC code in section VI and assume
uncoded symbols until then. The substreams are
organized in frames of length L and are transmitted
over the nT antennas at the same time. The system
is equal to V-BLAST proposed in [4] and denoted
as Layered Space-Time (LST) architecture in [6].
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Fig. 1. Model of a MIMO system with nT transmit and nR

receive antennas

In order to describe the MIMO system, one time
slot of the time-discrete baseband model of the
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MIMO system is investigated.
Let c = (c1c2 . . . cnT

)T denote the vector of trans-
mitted symbols, then the corresponding received
signal vector x = (x1x2 . . . xnR

)T is calculated by

x = H · c + ν . (1)

In equation (1), ν = (ν1ν2 . . . νnR
)T depicts the

vector of noise terms at the nR receiving anten-
nas, assuming uncorrelated white gaussian noise of
variance N0/2 per dimension for all antennas. The
transmitted symbols are normalized so that the av-
erage received energy per bit is one. The nR×nT

channel matrix

H =







h1,1 . . . h1,nT

...
. . .

...
hnR,1 . . . hnR,nT






(2)

contains i.i.d. complex fading gains hj,i describing
the tap gains between transmit antenna i and re-
ceive antenna j. Column i of H is denoted by hi and
represents the single-input multiple-output (SIMO)
channel between transmit antenna i and the nR re-
ceive antennas. We assume a static flat-fading envi-
ronment, i.e. the channel matrix H is constant over
a frame and changes independently from frame to
frame. The distinct fading gains are assumed to
be uncorrelated and are perfectly known by the re-
ceiver.

III. Detecting Layered Space-Time Codes

In this paragraph, two different detection algo-
rithms for the LST architecture are described. First,
the standard detection algorithm proposed by Bell-
Labs [5] and known as V-BLAST is depicted. Shiu
and Kahn utilized the QR decomposition of the
channel matrix for the detection of the layers to de-
rive error bounds for V-BLAST and D-BLAST in
[6]. They presumed the knowledge of the best de-
tection sequence, but did not discuss the problem
of an efficient assorting algorithm, which is done in
section IV of this paper.

A. BLAST-Algorithm

It is obvious from equation (1) that the received
signals are a linear combination of the nT transmit-
ted signals. The optimum way of recovering the nT

signals at the receiver would be maximum-likelihood
detection, which is not feasible due to the enormous
complexity.

In [4] and [5], Foschini et al. proposed a succes-
sive interference cancellation technique which nulls
the interferer by linearly weighting the received sig-
nal vector with a zero-forcing (ZF) nulling vector.
In every detection step, all signals but one are re-
garded as interferer. By applying the nulling vector
to interference cancellation, the influence of these
signals is nulled out, the target signal is detected

and subsequently subtracted from the received sig-
nal vector (Interference Cancellation).

For detecting signal i, the nulling vector wi has
to be orthogonal to columns hl, l 6= i of the channel
matrix. The condition1

wT
i · hl =

{

1 l = i
0 l 6= i

(3)

is fulfilled by the i-th row of the Moore-Penrose
pseudo-inverse

G := H+ :=
(

HHH
)−1

HH , (4)

of the channel matrix H. With g(i) denoting row i of
G, the received signal vector x is linearly weighted
with the nulling vector wT

i = g(i) and the result

yi = wT
i · x = g(i) · (H · c + ν) (5)

= ci + ν̃i .

is used as a decision statistic for the i-th substream
where ν̃i = g(i) · ν denotes the actual noise. By ap-
plying the quantization operation Q[·] appropriate
to the signal constellation, signal i can be estimated:

ĉi = Q[yi] . (6)

The interference caused by the detected signal ĉi is
now subtracted from the received signal vector xi

xi+1 = xi − hi · ĉi (7)

and the corresponding column in the channel matrix
is set to zero. The indexed variables (Hi,Gi,xi) de-
note from now on the specific variables in detection
step i, beginning with the assignment (H1 = H,
G1 = G, x1 = x) in the first step. Using the nomen-

clature introduced in [5], Hi+1 := Hi
i describes the

nulling of column i of the channel matrix Hi and
corresponds to an equivalent system with nT − i
transmit and nR receive antennas. Thus, the pseudo
inverse of this reduced channel matrix Hi+1 is used
to calculate the nulling vector for detecting layer
i + 1.

The order of detecting affects the error proba-
bility of the algorithm [5]. The sequence S =
{k1, k2, . . . , knT

} is defined as a permutation of
the numbers 1, 2, . . . , nT to depict a specific de-
tection sequel. Thus the values yk1

, yk2
, . . . , yknT

are filtered one by one, the transmitted signals
ĉk1

, ĉk2
, . . . , ĉknT

are estimated and the interference
is cancelled step by step according to equations (5)
to (7). In order to derive the minimum total error
probability, it is optimal always to choose and de-
tect the layer with the largest post detection signal-
to-noise ratio [5]:

SNRki
=

E
{

|cki
|2

}

E {|nki
|2} ‖wki

‖2
∼

1
∥

∥g(ki)
∥

∥

2 . (8)

1The transpose and conjugate transpose (Hermitian) of x

are denoted by xT and xH , respectively.
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Consequently, it is optimal to choose the row g
(ki)
i

of Gi with minimal norm and thus detect the as-
sociated signal cki

in detection step i. The whole
detection algorithm is shown in Fig. 2.

(1) for i = 1, . . . , nT

(2) Gi = H+
i

(3) ki = arg min
j

∥

∥

∥g
(j)
i

∥

∥

∥

2

(4) wT
ki

= g
(ki)
i

(5) yki
= wT

ki
· xi

(6) ĉki
= Q[yki

]
(7) xi+1 = xi − hki

· ĉki

(8) Hi+1 = Hki

i

(9) end

Fig. 2. V-BLAST algorithm for detecting layered space-time
signals

B. QR decomposition of the channel matrix

In [6], Shiu and Kahn used the QR decomposition
of the channel matrix H to derive bounds for the
error probability of LST codes. Therefore, the nR×
nT channel matrix H

H = Q · R , (9)

is factorized into the unitary nR × nT matrix Q

and the upper triangular nT × nT matrix R. By
denoting the column i of H by hi and column i
of Q by qi, the decomposition in equation (9) is
described columnwise by

(h1 . . .hnT
) = (q1 . . .qnT

)·







r1,1 . . . r1,nT

. . .
...

0 rnT ,nT






.

(10)
By multiplying equation (1) from the left with the
Hermitian matrix of Q, a nT × 1 modified received
signal vector

y = QH · x = R · c + η . (11)

is created from the nR × 1 received signal vector x.
Since Q is unitary, the statistical properties of the
noise term η = QH · ν remain unchanged. Element
k of vector y becomes

yk = rk,k · ck + ηk + dk (12)

with the interference term

dk =

nT
∑

i=k+1

rk,i · ci . (13)

Thus, yk depends on the weighted transmit signal
rk,k · ck, the noise ηk and the interference term dk.
Since R is upper triangular, dk is independent of

the upper layer signals c1, . . . , ck−1 and hence the
lowest layer (transmit signal cnT

) is described by

ynT
= rnT ,nT

· cnT
+ ηnT

. (14)

Then, the decision statistic ynT
is independent of

the remaining transmit signals and can be used to
estimate ĉnT

ĉnT
= Q

[

ynT

rnT ,nT

]

(15)

by applying the quantization operation Q[·].
For detecting layer nT − 1, the interference term

rnT −1,nT
· ĉnT

is eliminated in the modified received
signal

ynT −1 = rnT −1,nT −1 ·cnT −1+rnT −1,nT
·cnT

+ηnT −1 .
(16)

Consequently, an interference free decision statistic
to estimate cnT −1 is obtained under the assumption
ĉnT

= cnT
. Detecting layer k = nT − 1, . . . , 1 takes

place in an equivalent way. With previous decisions
ĉk+1, . . . , ĉnT

, the interference term d̂k is calculated
and cancelled out in the modified received signal
yk. Assuming that all previous decisions are correct
(d̂k = dk), the value

zk = yk − d̂k = rk,k · ck + ηk (17)

is free of interference and thus it can be used to
detect ck with ĉk = Q[zk/rk,k].

As already stated, the order of detection is cru-
cial for the error probability of the LST system due
to the risk of error propagation [5]. When using the
QR decomposition for detection, the sequence of de-
tection is achieved by permutating the elements of
c and the corresponding columns of H and thereby
results in different matrices Q and R. The optimum
R maximizes

SNRk =
E

{

|ck|
2
}

|rk,k|
2

E {|nki
|2}

∼ |rk,k|
2 (18)

in each step of the detection process (corresponds
to the maximization of |rk,k| for k = nT , . . . , 1) and
can be found by performing O(n2

T /2) QR decompo-
sitions of permutations of H [7]. In order to reduce
the computational effort of finding a detection se-
quence, we derive a suboptimal but less complex
algorithm for sorting in the next section.

IV. Sorted QR decomposition

In this section, a new and very efficient approach
that comes close to the error performance of V-
BLAST is introduced. It is basically an extension
of the modified Gram-Schmidt algorithm [8] by or-
dering the columns of H in each orthogonalization
step. In order to describe this new algorithm, we
first review the modified Gram-Schmidt algorithm
without sorting. In the subsequent the motivation
for the sorted approach and the description of the
sorted QR decomposition are presented.
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A. Modified Gram-Schmidt

The Gram-Schmidt algorithm computes matrix
R of the QR decomposition line by line from top
to bottom and matrix Q columnwise from left to
right [8]. Starting with the assignment Q := H =
(h1, . . . ,hnT

), the following operations are executed
in every step i = 1, . . . , nT :

• Assign norm of column vector qi to the diagonal
element ri,i of the upper triangular matrix R (ri,i =
‖qi‖) and subsequently scale qi to length one (qi =
qi/ri,i).
• Orthogonalize columns ql, i < l ≤ nT , with re-
gard to qi, i.e. subtract the component parallel to
qi. The component in the direction of qi is equal
to the projection ri,l = qH

i · ql and the orthogonal
part is calculated by ql = ql − ri,l · qi.

In every step i the vectors q1, . . . ,qi form an
orthonormal basis of the vector space spanned by
h1, . . . ,hi and the vectors ql, i < l ≤ nT , contain
the components of the corresponding hl orthogonal
to this vector space. The diagonal element ri,i de-
notes the length of hi orthogonal to q1, . . . ,qi−1 or
h1, . . . ,hi−1, respectively. Furthermore, the coeffi-
cients ri,l specify the component of hl, i < l ≤ nT ,
in the direction of qi.

B. Sorted Gram-Schmidt

From the explanation in section IV-A it is obvi-
ous that the modified Gram-Schmidt process cal-
culates the diagonal elements from r1,1 to rnT ,nT

.
As already stated, it would be optimal to maximize
|rk,k| by permutating the rows of Q in every detec-
tion step, i.e from rnT ,nT

to r1,1. Thus, the optimal
detection sequence SOPT maximizes SNRk in every
detecting step k, k = nT , . . . , 1. Unfortunately, the
search for SOPT is very costly, because it requires
O(n2

T /2) QR decompositions.
The sorted Gram-Schmidt process (Sorted QR

Decomposition, SQRD) proposed here searches for
the detection sequence S that achieves small SNRk

in the upper layers. Consequently, the absolut val-
ues of the diagonal elements rk,k in the upper left
area of the triangular matrix R are small. Thus,
a detection fault caused by the little signal-to-noise
ratio SNRk influences only few layers 1, . . . , k − 1
through error propagation.

In order to illustrate the functionality, one or-
thogonalization step i of the SQRD algorithm is ex-
plained in detail. The first i − 1 elements of the
sequence S are already calculated and therefore the
vectors q1, . . . ,qi−1 are fixed. The ordering of the
remaining columns is variable and is determined by
the ordering rule in order to force small signal-to-
noise ratios for the upper layers. Therefore, the col-
umn with minimal norm is chosen from the vectors
qi, . . . ,qnT

and denoted with qki
. The correspond-

ing hki
has the smallest component orthogonal to

the space spanned by q1, . . . ,qi−1, wich leads to the
smallest ri,i of the possible permutations in step i
and thereby the smallest SNRi.

The only change to the modified Gram-Schmidt
algorithm is the reordering of the columns of Q. In
every decomposition step i the column qi, . . . ,qnT

with the minimal length orthogonal to the already
spanned vector space q1, . . . ,qi−1 is chosen. The
whole algorithm for the signal detection is shown in
Fig. 3. It consists of a decomposition part (line (1)
to (11)) and a detection part (line (12) to (17)). In
the decomposition part, the ordering is done in line
(3) and (4) and provides the permutation vector S,
the orthogonal matrix Q and the upper triangular
matrix R. In the detection part, the received sig-
nal vector is sorted according to the permutation S,
and the modified received signal vector y is calcu-
lated (line (12)). The following lines (13) to (17)
represent the iterative detection process described
in section III-B.

SQRD Algorithm

(1) R = 0, Q = H, S = (1, . . . , nT )
(2) for i = 1, . . . , nT

(3) ki = arg min
l=i,...,nT

‖ql‖
2

(4) exchange col. i and ki in Q,R,S
(5) ri,i = ‖qi‖
(6) qi = qi/ri,i

(7) for l = i + 1, . . . , nT

(8) ri,l = qH
i · ql

(9) ql = ql − ri,l · qi

(10) end

(11) end

Signal Detection

(12) y = QH · x
(13) for k = nT , . . . , 1

(14) d̂k =
∑nT

i=k+1 rk,i · ĉi

(15) zk = yk − d̂k

(16) ĉk = Q[zk/rk,k]
(17) end

(18) Permutate ĉ according to S

Fig. 3. SQRD algorithm and signal detection of layered
space-time codes

V. Performance Analysis

The performance of the proposed SQRD detec-
tion algorithm and the standard LST detection al-
gorithm (V-BLAST, [5]) was compared by means
of Monte Carlo simulations for several scenarios.
Fig. 4 shows the bit error rates (BER) for an un-
coded transmission of QPSK symbols in a system
with nT = 8 and nR = 12 antennas. The iterative
methods unsorted QR decomposition, SQRD and
V-BLAST achieves a performance enhancement in
comparison to the simple multiplication with the
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pseudo inverse of H. The strong impact of order-
ing the QR decomposition is obvious and only a
small difference of approximately 0.5 dB related to
V-BLAST for a BER of 10−5 is visible for the SQRD
algorithm.
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Fig. 4. Simulation with nT = 8 and nR = 12 antennas,
uncoded QPSK symbols, spectral efficiency of 16 Bit/s/Hz

Fig. 5 shows the BER of the different detection
algorithms for an uncoded system with nT = 4 and
nR = 6 antennas. These results confirm the good
performance of the SQRD algorithm with the re-
duced calculation complexity in mind.
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Fig. 5. Simulation with nT = 4 and nR = 6 antennas,
uncoded QPSK symbols, spectral efficiency of 8 Bit/s/Hz

In [9] the “genie” detection process was intro-
duced to investigate the error propagation of V-
BLAST. This implies real interference suppression
for each layer, but for subsequent layers ideal detec-
tion of the signals of preceding layers is assumed.
Thus, only correct values are subtracted to reduce
the system order and consequently no error propa-
gation takes place.
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Fig. 6. “Genie” detection in a system with nT = 4 and
nR = 4 antennas, uncoded QPSK symbols

In Fig. 6 the BER per layer are shown for a sys-
tem with nT = 4 and nR = 4 antennas when the
“genie” detection is used. In every detection step
k = 4, . . . , 1 a diversity of gd = nR−k+1 is achieved.
According to the diversity levels, the BER of layer
k decays with (Eb/N0)

−gd . Thus the BER of the
upper layers decay much steeper due to the higher
diversity levels in comparison to the layer detected
first (layer 4).

VI. Applying Channel Coding

In order to improve the performance of the single
user to user communication, each layer is now in-
dependently encoded by a channel coder. For sim-
plicity, we used the half rate (7, 5)oct convolutional
encoder and viterbi decoding as shown in Fig. 7.
Fig. 8 shows the Frame Error Rate (FER) of an
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Fig. 7. Coded LST architecture with nT transmit and nR

receive antennas, FEC in each layer

uncoded and a coded system equipped with nT = 8
and nT = 12 antennas using the V-BLAST or the
SQRD detection algorithm, respectively. The trans-
mitted QPSK signals are organized in frames of
length L = 100 symbols including tail symbols for
the coded case. The figure shows the expected per-
formance enhancement for coded systems and again
the SQRD detection nearly reaches the error prob-
ability of V-BLAST.

This statement is confirmed by the simulation re-
sult for a system with nT = 4 and nR = 6 antennas,
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Fig. 8. FER of uncoded and convolutionally coded system
with nT = 8 and nR = 12 antennas, frame length L = 100,
QPSK symbols

shown in Fig. 9.
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Fig. 9. FER of uncoded and convolutionally coded system
with nT = 4 and nR = 6 antennas, frame length L = 100,
QPSK symbols

VII. Computational Effort

The computational requirements of the proposed
SQRD algorithm and V-BLAST are compared in
this section. Therefore, the floating point opera-
tions of these algorithms are specified according to
the system variables nT , nR and L, with L denoting
the frame length (i.e. number of symbols transmit-
ted within one layer). Real valued additions, multi-
plications and divisions are equally counted as one
flop to obtain a single value for the computational
effort.

With these assumptions, the V-BLAST algorithm

– as stated in Fig 2 – needs

fV−BLAST = 8n4
T + 16n3

T nR + 8n2
T nR + 18LnT nR

(19)
floating point operations. Using the same counting,
the SQRD algorithm needs

fSQRD = 12n2
T nR − 2nT nR + nT (20)

+L (4n2
T + 8nT nR + 2nT )

operations. The computational requirements of the
V-BLAST and the SQRD algorithm are compared
by the quotient

ρ =
fSQRD

fV−BLAST
. (21)
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Fig. 10. Quotient ρ of required floating point operations for
SQRD and V-BLAST with nT = 8 and nR = 12 antennas –
varying frame length L

Fig. 10 depicts the computational advantage of
the SQRD algorithm over the V-BLAST algorithm
for a system with nT = 8 and nR = 12 antennas.
With an increasing number L of symbols per layer
the quotient ρ saturates to a limit value. This value
can be calculated by

ρlim = lim
L→∞

ρ =
4nT + 8nR + 2

18nR

(22)

and is shown in Fig. 10 as a horizontal line.
Furthermore, the computational demands of V-

BLAST and SQRD concerning different numbers of
antennas are compared. A system with L = 100
symbols per layer and a varying number of trans-
mit and receive antennas, with nT = nR, is investi-
gated. Fig. 11 shows the increasing computational
advantage of the SQRD compared the V-BLAST al-
gorithm for increasing number of antennas. Thus,
the SQRD dramatically reduces the computational
requirements for systems with larger amount of an-
tennas.
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Fig. 11. Quotient ρ of required floating point operations for
SQRD and V-BLAST with L = 100 – varying nT = nR

VIII. Summary and Conclusions

We have described a new detection algorithm for
LST codes. The algorithm is based on the Gram-
Schmidt algorithm for QR decomposition and re-
quires less computational effort in comparison to the
standard detection algorithm with only small degra-
dation in error performance. We presented simu-
lation results for several scenarios and analytically
demonstrated the computational advantage of the
proposed SQRD algorithm.

Since the core of our algorithm consists of a sorted
kind of QR decomposition, the derived algorithm is
not restricted to layered space-time architectures.
It can generally be used to detect vector channel
systems.
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