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ABSTRACT

In this paper we derive a Bayesian estimator for doubly cor-
related MIMO channels. The Bayesian estimator has clearly
superior normalized mean squared error performance com-
pared to parametric approaches especially when the channel
is strongly correlated. However, since the computational costs
may exceed practical limits we present a class of fix point
algorithms significantly reducing the numerical effort. The
convergence behavior of the fixed point algorithm is exam-
ined and a regularization is proposed in order to guarantee
general convergence.

1. INTRODUCTION

In the last two decades the research on multiple-input multiple-
output (MIMO) systems has attracted a lot of attention due to
its high channel capacity at comparatively low bandwith con-
sumption [1]. However, the issue of channel estimation (CE)
has emerged as one of the bottlenecks in coherent MIMO
transmission, since the amount of pilot symbols is proportion-
ally increasing with the number of transmit antennas. Thus,
especially in rapidly varying environments, where the chan-
nel impulse response has to be tracked in short periods, a large
fraction of the available bandwidth has to be occupied by pi-
lot symbols. From the information theoretic point of view
the capacity degradation by reason of pilot assisted channel
estimation was investigated in [2–4]. The impact of inaccu-
rate channel state information (CSI) may become even worse
when applying space time signal processing as e.g. beam-
forming [5] or Alamouti [6,7].

In order to refine the accuracy of channel estimates with-
out increasing the training overhead, numerous semiblind CE
methods have been proposed, e.g. [8]. Also noncoherent space
time coding has been introduced in [9,10], where the channel
need not to be explicitly identified. However, most of these
approaches require a high computational effort or suffer from
a performance degradation and, thus, are not capable for prac-
tical applications.

These arguments motivate the need of more advanced tech-
niques for pilot assisted CE. In [11, 12] the issue of optimum
pilot constellations in terms of a minimum mean squared error

(MSE) is addressed. Another source of improvement might
be found by exploring the long term properties of time vary-
ing channels. In [13] it had been observed that the channel
covariance matrix is very slowly changing in time. Thus, the
covariance matrix may be tracked over a long time and treated
as a-priori knowledge for the current CE. If the covariance
matrix is rank deficient, the channel is constraint on a certain
subspace. Performance improvements as well as computa-
tional simplification can be achieved by matching the channel
onto this subspace as shown in [14]. The gain achieved by in-
corporating covariance knowledge generally depends on the
strength of channel correlations. Hence, on the one hand cor-
relations are cumbersome in terms of channel capacity, on the
other hand channel estimation may benefit therefrom. In this
paper we presume the Kronecker model which is a well veri-
fied assumption for spatially correlated MIMO channels [15].
In [16] on the basis of this model statistical pilot shaping is
suggested. However, the computational costs of Bayesian CE
are much higher for correlated than for non-correlated chan-
nels. In this paper a class of fixpoint algorithms is presented
having low complexity but delivering estimates close to the
maximum a-posteriori probability bound.

The outline of this paper is as follows. In Section 2 we
introduce the system model. The basics of parametric and
Bayesian channel estimation are presented in Section 3. Sub-
sequently, a class of fixpoint algorithms is proposed in Section
4, and numerical results are shown in Section 5. Finally, the
paper is concluded in Section 6.

2. SYSTEM MODEL

Throughout the paper boldface lowercase letter denote col-
umn vectors, boldface uppercase letters denote matrices and
IM is the identity matrix of sizeM ×M . The superscript “T ”
stands for transpose and “H” for Hermitian (conjugate trans-
pose). vec(A) stacks the columns ofA in a column vector,⊗
is the Kronecker product operator.‖A‖F denotes the Frobe-
nius norm and‖A‖2 the L2-norm of a matrixA.

We consider a MIMO communication link withM re-
ceive andN transmit antennas. LetS ∈ CN×K be the matrix
of transmitted pilot symbols of lengthK ≥ N with
E{[S]2n,k} = 1 is the mean power per symbol. Without loss of



generality we consider an orthogonal pilot design, i.e.SSH =
KIN (Orthogonal pilot design has been shown to be opti-
mum for uncorrelated MIMO channels [11, 12]. In fact this
is not necessarily true for correlated MIMO channels.). The
received signal is given by

R = HS + V, (1)

whereH ∈ CM×N is the channel matrix whose entries[H]m,n

characterize the transmission path from then-th transmit an-
tenna to them-th receive antenna andV ∈ CM×K is additive
white identically independently distributed (i.i.d.) noise of
mean powerE{|[V ]m,k|2} = σ2

v . The channel coefficients
are assumed to be random variables characterized by

H = Φ
1
2

RHWΦ
1
2

T (2)

where[HW]m,n ∈ CN (0, 1) ∀ m = 1, · · · , M ; n = 1, · · · , N
is i.i.d. andΦR andΦT denote the spatial correlation matrix
at receiver and transmitter, respectively.

In order to derive the Bayesian channel estimator we rewrite
Eq. (1) as

r = S̄h + v, (3)

wherer = vec(R), v = vec(V), h = vec(H) and S̄ =
ST ⊗ IM with “⊗” denoting the Kronecker product1. The
probability density function (PDF) of the channel is given by

p(h) =
exp

(
−hH(Φ−T

T ⊗ Φ−1
R )h

)

πMN (detΦT)M (detΦR)N

=
exp

(

−‖Φ
− 1

2

R HΦ
− 1

2

T ‖2
F

)

πMN (detΦT)M (detΦR)N

(4)

and the likelihood to obtainr under the condition that̄S was
transmitted over the channelh is given by

p(r|h, S̄) =
exp

(
−(r − S̄h)H(r − S̄h)/σ2

v

)

(πσ2
v)MK

(5)

3. PARAMETRIC AND BAYESIAN CHANNEL
ESTIMATION

In common literature (e.g. [17]) estimation methods are clas-
sified intoparametricandBayesianapproaches. A standard
parametric approach is the best linear unbiased estimator
(BLUE) which is often referred to as least squares channel
estimation. It is readily known that BLUE satisfies the maxi-
mum likelihood (ML) criterion, i.e.

ĥBLUE = arg max
h

p(r|h, S̄) =
1

K
S̄Hr (6)

which is equivalent to

ĤBLUE =
1

K
RSH . (7)

1Note that vec(ABC) = (CT ⊗ A) · vec(B) .

In contrast to parametric methods the Bayesian approach treats
the desired parameters as random variable with a-priori known
statistics. Clearly, the a-priori PDF of the channelp(h) is as-
sumed to be perfectly known at the receiver. Thus, we may
find a Bayesian estimator by incorporatingp(h) in (6). The
obtained estimator is optimum in the sense of the maximum
a-posteriori (MAP) criterion. The Bayesian approach can be
expressed by

ĥBay = arg max
h

p(h|r, S̄)

= arg max
h

p(h)p(r|h, S̄)

= (KIMN + σ2
v(Φ−T

T ⊗ Φ−1
R )

︸ ︷︷ ︸

Θ

)−1S̄Hr. (8)

Note thatΘ has only Kronecker structure (i.e. can be ex-
pressed in terms ofAT ⊗ B) if either the transmit or the
receive correlation matrixΦT and ΦR, respectively, is an
identity matrix. Otherwise Eq.(8) cannot be converted into
a compact matrix form similar to (7). In fact, due to matrix
inversion of dimensionMN × MN the computational costs
of the Bayesian approach for doubly correlated MIMO chan-
nels are of orderO((MN)3) which significantly exceeds the
numerical effort required for BLUE.

4. FIX POINT ALGORITHM

In this section we derive a class of fixpoint algorithms for
Bayesian channel estimation. First, the non-regularized fix-
point algorithm (NRFA) is presented in Section 4.1. Although
NRFA is not reasonable for practical application due to a lack
of convergence, it is the basis for the fixpoint approaches
presented in the subsequent sections. In order to guarantee
general convergence we introduce the concept of regulariza-
tion. The “linearly regularized fixpoint algorithm” (LRFA)is
presented in section Section 4.2 and an alternative approach
named as “projectively regularized fixpoint algorithm” (PRFA)
is presented in Section 4.3. Since the two regularized ap-
proaches LRFA and PRFA provide opposite benefits, in Sec-
tion 4.4 a combination termed as “linearly and projectively
regularized fixpoint algorithm” (LPRFA) is proposed.

4.1. NRFA

Left multiplying (8) byΘ/K we obtain

ĥBay +
σ2

v

K
(Φ−T

T ⊗ Φ−1
R )ĥBay =

1

K
S̄Hr

⇒ĥBay =
1

K
S̄Hr −

σ2
v

K
(Φ−T

T ⊗ Φ−1
R )ĥBay.

(9)



In contrast to (8) this expression can be converted into com-
pact matrix form by

ĤBay =
1

K
RSH −

σ2
v

K
Φ−1

R ĤBayΦ
−1
T

= ĤBLUE −
σ2

v

K
Φ−1

R ĤBayΦ
−1
T

︸ ︷︷ ︸

f(ĤBay)

,
(10)

where the r.h.s. can be expressed as function of the desired
channel impulse responsêH. Apparently, the MAP-solution
ĤBay is a fixpoint of this function (i.e. a point that is mapped
onto itself by the function). On the basis of this expression
we deduce the fix point Algorithm 1. The numerical costs of

Algorithmus 1 Fix Point Algorithm

1: initialize Ĥ0 = 0 andi = 0
2: repeat
3: calculateĤi+1 = f(Ĥi)
4: seti = i + 1
5: until ‖Ĥi − Ĥi−1‖2

F < threshold

one iteration are given byO(N3 + M3) due to the inversion
of ΦR andΦT. Thus, compared to (8) even with a moderate
number of iterations the computational complexity is signifi-
cantly reduced. Note that the result of the first iterationĤ1 is
identical to the BLUE solution. In order to explore the con-
vergence behavior of NRFA, we recapitulate some common
results of functional analysis [18]:

Definition: Let f : X → Y be a function defined on
a metric space. Then this function is said to be Lipschitz-
continuous in the subsetZ ⊆ X if there exist a nonnegative
real numberL such that for eacha, b ∈ Z the condition

‖f(a) − f(b)‖Y ≤ L‖a− b‖X (11)

holds. The smallest valueL satisfying (11) is called Lipschitz-
constant.

Banachs fixpoint theorem:A function f : X → X has
exactly one fixpointf(x∞) = x∞ if it is Lipschitz continuous
in X and the corresponding Lipschitz constant isL < 1.

In fact, the valueL is also an indicator for the convergence
behavior of fixpoint algorithms. By replacingf(xn−1) =
xn andf(x∞) = x∞ in (11) it can easily be seen that the
progress per iteration is lower bounded by

‖xn−1 − x∞‖ ≤ L‖xn − x∞‖. (12)

As a consequence, general convergence can be guaranteed for
L < 1.
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Fig. 1. Convergence behavior of NRFA at (a)LNRFA < 1
und (b)LNRFA > 1.

The Lipschitz constant off(Ĥ) can be calculated by

LNRFA = max
Ĥa,Ĥb

‖f(Ĥa) − f(Ĥb)‖2

‖Ĥa − Ĥb‖2

= max
Ĥa,Ĥb

σ2
v

K

‖Φ−1
R (Ĥa − Ĥb)Φ

−1
T ‖2

‖Ĥa − Ĥb‖2

=
σ2

v

Kλmin,Tλmin,R
,

(13)

whereλmin,T and λmin,R are the minimum eigenvalues of
ΦT andΦR, respectively. Apparently, the convergence be-
havior of NRFA becomes crucial at low SNR and when the
channel is strongly correlated. As illustrated in Fig. 1 conver-
gence can be guaranteed as long asfNRFA(Ĥ) is within the
gray colored region, whereas otherwise NRFA diverges. Note
that the intersection offNRFA(Ĥ) and the y-axis is always at
f(0) = ĤBLUE independently fromLNRFA.

4.2. LRFA

The main idea behind regularization is to replacef(Ĥ) in (10)
by a function which is as close as possible to the original func-
tion while its Lipschitz constant is bounded by a predefined
valueL0 < 1. Such a linear regularized function is given by

fLPRA(Ĥ) = ĤBLUE − a
σ2

v

K
Φ−1

R ĤΦ−1
T (14)

where

a = min

(

1,
L0K

σ2
v

λmin,Tλmin,R

)

(15)

is a reel nonnegative parameter ensuringLLRFA ≤ L0. Note,
that while the regularization is active, i.e.a < 1, the fix point
ĤLRFA = f(ĤLRFA) is shifted by a small fraction from the
desired valuêHBay towardsĤBLUE. An illustration of this
effect is shown in Fig. 2. Thus, by adjustingL0 properly we
may trade off between performance and convergence speed.
However, the worst case parametera = 0 still delivers the
BLUE solution. A drawback of LRFA is that if either the
transmit or the receive correlation matrix is rank deficient, i.e.



ĤBay ĤBLUEĤLRFA

Ĥ

fLRFA(Ĥ)

f(Ĥ)

Fig. 2. Convergence behavior of linear regularized fixpoint
algorithm.

λmin,T = 0 or λmin,R = 0, due toa = 0 it always delivers
the BLUE solution.

4.3. PRFA

In contrast to the previously discussed LRFA this method is
also able to deal with rank deficient correlation matrices ina
smart way. Implying the singular value decompositions

ΦT = UΛTUH andΦR = VΛRVH

the PDF of the channel given in (4) can be rewritten by

p(H) ∝ exp(−‖Φ
− 1

2

R HΦ
− 1

2

T ‖2
F )

= exp(−‖VΛ
− 1

2

R H̄Λ
− 1

2

T UH‖2
F )

= exp(−
∑

i,j

|h̄i,j |
2λ−1

i,Tλ−1
j,R),

(16)

whereH̄ = VHHU is the rotated channel matrix whose
entriesh̄i,j are independently distributed and subsequently
called the(i, j)-th eigen-component of the channel. From
(16) follows that the product of the eigenvaluesλi,Tλj,R cor-
responds to the variance ofh̄i,j . Hence, whenλi,Tλj,R is very
small the contribution of the corresponding eigen-component
h̄i,j can be neglected for channel estimation. Since even those
eigen-components are responsible for the bad convergence
behavior of NRFA, it seems to be evident to eliminate them
from the fixpoint iteration. Therefore, we define the projec-
tion matrices

QI,T =
I∑

i=1

uiu
H
i und QJ,R =

J∑

j=1

vjv
H
j

and the pseudo inverse of the rank reduced correlation matri-
ces

Φinv
I,T =

I∑

i=1

λ−1
i,Tuiu

H
i und Φinv

J,R =

J∑

j=1

λ−1
j,Rvjv

H
j ,

whereui andvj are thei-th column ofU corresponding to
the eigenvalueλi,T and, respectively, thej-th column ofV
corresponding to the eigenvalueλj,R. Each eigen-component
according to(i, j) > (I, J) is removed from the instanta-
neous channel estimate by right and left multiplying (10) by
QI,T andQJ,R. Thus, the PRFA is obtained by

fPRFA(Ĥ) = QJ,R(ĤBLUE −
σ2

v

K
Φ−1

R ĤΦ−1
T )QI,T

= QJ,RĤBLUEQI,T −
σ2

v

K
Φinv

J,RĤΦinv
I,T.

(17)

The Lipschitz-constant offPRFA(Ĥ) is given by

LPRFA =
σ2

v

KλI,T, λJ,R
≤

σ2
v

Kλmin,T, λmin,R
. (18)

In order to determine appropriate dimensions(I, J) we pro-
pose to solve following optimization problem: Choose(I, J)
such that the energy (variance) of participating channel eigen-
components in (17) becomes maximum under the condition
LPRFA < L0, i.e.

(I, J) = argmax
Ī,J̄

Ī∑

i=1

J̄∑

j=1

λi,Tλj,R s.t. λĪ,TλJ̄,R >
σ2

v

KL0
.

(19)
As it will be shown in section 5 PRFA is superior to LRFA
when the channel is very strongly correlated. Conversely,
PRFA is not robust in the sense that its worst case estimate
is bounded bŷHBLUE.

4.4. LPRFA

Merging the regularization techniques applied in LRFA and
PRFA we obtain the LPRFA which is defined by the function

fLPRFA(Ĥ) = QJ,RĤMLQI,T − aI,J

σ2
v

K
Φinv

J,RĤΦinv
I,T.

(20)
The parameter

aI,J = min

(

1,
L0K

σ2
v

λI,TλJ,R

)

(21)

is upper bounding the Lipschitz constantLLPRFA to L0. Ap-
propriate values for(I, J) can be found by minimizing the
mean squared error between true and estimated channel (see
Appendix), i.e.

(I, J) = arg min
Ī,J̄

E
(

‖H− ĤLPRFA(Ī , J̄)‖2
F

)

(22)

= argmax
Ī,J̄

Ī∑

i=1

J̄∑

j=1

(λi,Tλj,R − (1 − 2aĪ,J̄)
σ2

v

K
)λ2

i,Tλ2
j,R

(λi,Tλj,R + aĪ,J̄
σ2

v

K
)2

.



5. NUMERICAL RESULTS

In the simulations we modeled the transmit and receive cor-
relation matrix by

[ΦT]m,n = ρ
|m−n|
T and [ΦR]m,n = ρ

|m−n|
R , (23)

respectively, where the coefficients0 ≤ ρT, ρR ≤ 1 deter-
mine the degree of correlation. All curves in Fig. 3 are plot-
ted over the receive correlation in the range0.5 ≤ ρR < 1,
whereas the transmit correlation was kept constant atρT =
0.3. Note that the correlation matrixΦR equals to identity
if ρR = 0 whereas it tends to be the all-ones matrix forρR

being close to one. In fact, the fully correlated caseρ = 1
is not covered within the simulations since thenΦR is sin-
gular. Fig. 3 (a), (c) and (e) illustrate the influence of the
correlation on the normalized mean squared error (NMSE)
E{‖H− Ĥ‖2

F }/E{‖H‖2
F} of LRFA, PRFA and LPRFA, re-

spectively, at 12 dB SNR. For the reason of comparability
the NMSE curves of BLUE, the ideal Bayesian approach and
NRFA are plotted in each of these figures. Obviously, the
NMSE performance of BLUE is not affected by correlations,
whereas especially in case of strong correlations the Bayesian
estimator considerably benefits from the pre-knowledge on
the transmit and receive correlation matrix. Due to the factof
being the MAP estimator the Bayesian estimator displays the
lowest attainable NMSE-values and may, therefore, serve as
reference. The NRFA works very well up to the point at ap-
proximatelyρR = 0.8, where the Lipschitz constant exceeds
the admissible range. Beyond this threshold NRFA diverges.
General convergence is attained by each of the regularized fix-
point algorithms. LRFA is robust in the sense that its NMSE
performance is lower bounded by BLUE and it is monoton-
ically increasing for growingρR. Nevertheless, the gap be-
tween the ideal Baysian approach and LRFA becomes large
atρR close to one. Conversely, an abrupt performance degra-
dation can be observed for PRFA whenever a channel eigen-
component is faded out, whereas PRFA clearly outperforms
LRFA for very strong correlations. LPRFA shows excellent
performance over the whole range. The effect ofL0 on the
computational complexity in terms of the number of required
iterations until convergence is illustrated in the Figures3 (b),
(d) and (f). Especially for LPRFA the performance penalty
obtained by choosingL0 small is minor, whereas the numer-
ical costs are considerably reduced. For the considered8 × 8
MIMO system they amounts to approximately 1% of those of
the ideal Baysian approach.

6. CONCLUSIONS

In this paper we have presented a class of fixpoint algorithms
estimating doubly correlated MIMO channels with regard to
a-priori knowledge of the correlation matrices. Especially the
approach termed as LPRFA has shown NMSE performance

close to that of the ideal MAP solution at comparatively low
computational complexity.

Appendix

The mean squared error (MSE) between true and estimated
channel for LPRFA can be analytically calculated by

E
(

‖H− ĤLPRFA(I, J)‖2
F

)

= E
(

‖h− ĥLPRFA(I, J)‖2
2

)

= tr E
(
hhH

)

︸ ︷︷ ︸

trΦ=MN

+ tr

(

QI,J

(

IMN + aI,J

σ2
v

K
Φinv

I,J

)−2

E
(

ĥBLUEĥH
BLUE

)

︸ ︷︷ ︸

Φ+
σ2

v

K
IMN

)

− 2tr ℜ

{

QI,J

(

IMN + aI,J

σ2
v

K
Φinv

I,J

)−1

E
(

hĥH
BLUE

)

︸ ︷︷ ︸

Φ

}

= MN −
I∑

i=1

J∑

j=1

(λi,Tλj,R − (1 − 2aI,J)
σ2

v

K
)λ2

i,Tλ2
j,R

(λi,Tλj,R + aI,J
σ2

v

K
)2

,

(24)

whereQI,J = QT
I,T ⊗ QJ,R, Φ = ΦT

T ⊗ ΦR andΦinv
I,J =

(Φinv
I,T)T ⊗ Φinv

J,R. Note that by settingaI,J = 1 the MSE of
PRFA, and by settingI = N andJ = M the MSE of LRFA
is obtained.
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