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Abstract—In this paper we present a composite algorithm Channel Sate Information (CSI). This method still works well

for blind sequence estimation in frequency selective multile- in freq. select. MIMO environments if it is properly initiaéd,

input multiple-output systems. The proposed algorithm combines \\hareas it may get stuck in some local optimum without
methods based on second and higher order statistics with a . itial ch | estimat H th tationalrefsf
trellis-based approach. Moreover, the computational comexity ~'Nftal channetl esimates. However, the computation

of the presented method can be reduced by pre-processing the Viterbi detection in freq. select. MIMO systems may become
observed data with a blindly designed linear impulse shorteing very high and it might be desirable to decrease this effort by
filter. As verified by simulations low computational effort has not some sort of pre-processing as e.g. linear impulse shageni
necessarily led to a deterioration of performance. techniques.

In this paper we combine statistical methods with the
JVD/LMS algorithm. This approach is promising since on the

Due to its high data throughput with relatively low bandone hand side an appropriate starting point for JVD/LMS may
width consumption the research dnultiple Input Multiple  be provided by SOS and HOS methods and on the other hand
Output (MIMO) systems has become popular in the recejide the computational complexity may be kept low by blindly

years [1]. However, due to the high number of coefficientgdapting a linear impulse shortening filter on the basis 6 SO
characterizing the MIMO channel the issue of channel eghannel estimates.

timation has emerged as one of the bottlenecks in coherent
MIMO transmission. Hence, a large amount of pilot symbols is
required for accurate MIMO channel estimates. The sitnatio
becomes more crucial if the channel is frequency selectide a We consider a frequency selective MIMO system with
varies rapidly over time. Hassibi and Hochwald have showj(} transmit andy, receiveyantennas Using th ystem |

. X . . ) . Np R . g the equivalent
that from the information theoretic point of view purely gtil baseband representation at symbol clock the channel cattput
assisted channel estimation may be highly suboptimal [2].

. ; . S di te ti inst b d
The use of pilot symbols can be avoided by applying blm%lscre € time instanci can be expressed as

|I. INTRODUCTION

Il. CHANNEL MODEL

channel estimation methods at the receiver. Depending on La—1
the degree of knowledge concerning the distribution of the r(k) = Z H()b(k — ¢) + n(k), 1)
data source we may distinguish different classes of blind =0

identification approaches. The lowest level of knowledge is

required by statistical methods utilizing either second avhereH(¢) V ¢ = 0,---,Lg — 1 is a (Nr x Nt)-matrix
higher order statistical properties of the source, e.g. [} characterizing the frequency selective MIMO channel with
[5], [6]. Second Order Satistics (SOS) methods are only maximum delay ofLy symbol periodsb(k) is the channel
capable to determine the freq. select. MIMO channel up aput at time instancé according to theVr transmit antennas,
an instantaneous indeterminacy, whereas the remainiriglspand the lengthVy vectorn(k) is zero mean white gaussian
mixture can only be separated by uskiigher Order Statistics  hoise with variancet {n(k)n” (k)} = 021y, . The channel
(HOS) methods. Considering the finite signal alphabet (ariiput b(k) is composed of a finite alphabed, e.g. M-
thus, the knowledge of the source probability distributaitn PSK or M-QAM and assumed to be identically independent
the receiver) we may adopt trellis based methods for joidltstributed (i.i.d.) in space and time. The channel is agslim
channel estimation and data detection. In [7] it was progost® be constant oveK + Ly — 1 consecutive symbol periods
to embed an LMS adaptation of the unknown channel withiplock fading).

the calculation of each branch metricdoint Viterbi Detection We define theG-extension of a time dependent vector
(JVD). In single-input single-output systems JVD/LMS hab(k) by bg(k) = [bT(k),--- ,bT(k — G + 1)]7 and the
shown considerable performance even when starting from z&¥-convolutional extension of a freq. select. impulse resgon



filter IS-1 is intended for reducing the effective channel to

r(k

w a selectable lengtily,, where V(¢) is the reduced length
impulse response of the concatenation of the chali)
and the filterE(?).

"_)@ The required temporal characteristics of the unknown chan-
nel T'(¢) is provided by the SOS-channel estimator (SOS) in
the mean branch.

Since the JVD/LMS requires some initial channel esti-
mates, we also have to identify the remaining spatial channe
Fig. 1. Block diagram of the blind detection scheme componentS (up to a permutation and a complex scaling),
which is done in thelower branch. Therefore, the impulse
) ) shortening filter 1S-2 with impulse responB¢/) is employed
matrix H(() by the GNr x (G + Lu — 1) N matrix first, which in contrast to 1S-1 is aimed at completely rermgyi
HO) --- H(Ig-1) the InterSymbol Interference (ISI) from the observed signal.
He = . . The ISI-free signal (k) is fed to the HOS channel estimator
' ' " (HOS) identifying the remaining spatial part of the channel
H(0) o H(Lm - 1) Finally, the spatial and temporal channel estimates and the
where the usage of the subscript and the calligraphic letteimpulse shortening filter has to be combined (Comb.) in order
a notational convention within this paper. to obtain an initial estimate of the reduced length chaiVi¢l)
By the above definitions we may compactly rewrite the for JVD/LMS.
extension of (1) as Next, we will give a brief overview of the algorithms behind
each constituent block in Figure 1.
ra(k) = Hebatru-1(k) + na(k). 2)
I1l. M ETHODS FORBLIND MIMO ESTIMATION C. 505
A. Preliminaries Herein, we will give a brief description of the subspace

approach for identification of MIMO systems developed by

Our aim is to recover the completely unknown source sign eraim etc. [3]. This algorithm deals with determining ar ap

only from the channel output withput having any parti(:u"'j‘;gropriate representation of the temporal channel chaistits
knowledge on the frequency selective MIMO channel. T(¢) according to (4).

A general restriction of blind multichannel identification : .
: In consideration of the extended system model (2) the
is that the sources can only be recovered up to a complex _ . . O
) . . . Tcovariance matrix of the observation is given by

scaling and a permutation. The complex scaling amblgw%y

may be reduced by exploiting the finite alphabet character & — E{rg(k)r2(k)} = HoHE + 02 Inens. (5)
of the alphabet. Thus, we call amfk) to be a proper data

estimate, if its elements are from the set of admissible symbf the size of the observation windo& is sufficiently large,

A and if it is related to the actual source by ie.
¢ > Nrllm—1) (6)
z(k) = Pb(k — ko), (3) Ng — Nt

whereP is an unknownNt x Nt containing only one non- (the number of rows irH¢ is larger than the number of

zero element per each column and row &pgds an arbitrary columns) andH has full column rank we may find an

delay. orthogonal basis of the subspace spanned by the columns of
As mentioned above SOS methods are only able to identify,, as well as a basis of the corresponding null space by

the freg. select. channel up to instantaneous indetermiiiac singular value decomposition (SVD) @b. Note that (6)

order to distinguish between the parts of the channel, astidh does only have a finite solution ig > Np. The SVD of

by SOS and HOS methods, we introduce the decompositiafe covariance matrix is given by

H) =TW)SPV/{=0,---,Lg—1 4 2 H
() () ) y H () @G:[USUN] A+00'n15’ 2(:][ :||:g§{:|’ (7)

whereT(¢) V£ =0,---,Ly — 1 is a Ng x Ny matrix and TniN N
andS is a Nt x Ny matrix not depending on the temporalyhere A is a diagonal matrix containing the non-zero eigen-
parameter. values ongHg on its main diagonal, the columns &fg
and Uy are the eigenvectors spanning the signal and noise
space, respectivelyS = Ny - (M + Ly — 1) and N =
Ngr-M — Nt - (M + Ly — 1) are the dimensions of signal

B. Receiver Sructure

The considered receiver structure is illustrated in Fig.He
essential part of signal detection is done in thpper branch

ConSiSting of the impUIse shortening filter 1S-1 with imm"ls Lidentifiability conditions for blind SOS in terms of the chmals Z-
responseE(¢) and the JVD/LMS. The impulse shorteningransform are extensively studied in [3].



and noise subspace, respectively. Due to the orthogordlitysymbol periods, and the number of parallel outputs, which
signal and noise subspace we fixed to Nt for the sake of convenience. Given the above
UHH. — 0 8 parameters the TIR/(¢) still has several degrees of freedom.
NItG = (8) The ability of E(¢) to maximize the totaBignal to Interference

holds. By definingi{;,, as a convolutional matrix w.r.t. and Noise Ratio (SINR) at the equalizer output significantly

the uniformly partitoned noise space matrikly = depends on the realization ¥f(¢). Thus, we have to optimize
[UH(0),---,UH(G — 1)]" we may rearrange (8) as E(¢) andV (¢) in parallel. We may seek to completely remove
ISI choosingLy = 1. However, better results in terms of
H(0) SINR might be obtained by only partially removing the ISI
ut, : =0. (9) as done in case afy > 1. Thus, the output of TIR can be
H(Lg —1) used as reference while defining the error between reference

and the equalizer output b
Thus, if U, has full row rank, we may find an admissible g put by

representation of the temporal channel characteristickebsr- e(k) = &Erpg (k) — Vixpy, (k — ko). (13)

mining a basis 2f the right 2“” spacezng n a_ccorcliqance o In terms of minimum mean squared error (MMSE) our goal
(4),e.9.T =[T"(0),---,T" (Lg—1)]" satisfyinglf;’ T = . . :

. H Is to determine the pair
0. The main steps of the subspace approach are summarize

in Table 1. (&1, V1) = arg min B {e" (k)e(k)} st ViV =1In,. (14)
Algorithm 1 Blind SOS Channel Estimation The orthogonality constraint (ONC) in (14) was introduded,
1: Estimate the covariance matricés; order to avoid the trivial solutiog; = 0. Indeed, also other
2: Find an orthogonal basit/y of the noise subspace byconstraints were proposed in past [8], though ONC seems to
SVD on®¢ be the most reasonable choice in regard to SINR. Substitutin
3: RearrangéUy to U, (13) after little algebra the squared mean error in (14) can b
4: EstimateT(¢) by determining the right null space &f,,, expressed as

E {” (k)e(k)}
—1/2
D. Impulse Shortening = (1@ —iALTE®, 2|3 (15)
In the previous section we have discussed a method for  + [ViAk(T/LTig + 0ilne i) " AR VI |T,
estimation estimate of the temporal channel charactesis

T(¢) without using pilots symbols. Substitutin@(¢)S =
H(¢) we may rewrite (1) as

t{NhereAko = [0y NoxkoNe Inyne OLynpxsns)?. Appar-
ently, the first line in (15) can be forced to zero by

Lnet & =V1A,TH e (16)
r(k) = Y T({)Sb(k — () +n(k). (10) whereas the second line represents the remaining error only
£=0 x(k—0) depending onV;. An appropriate TIRV; minimizing this

Considering a Rayleigh block fading channel model, we migf1 rm subject to the ONC can be obtained by calculating the
3 1 — H 2 —1 H
assume an i.i.d. character of the coefficients of the spatlrI ht eigenvectors 08 = A, (71, Trs + oulvr-rs) “ A,

§ rresponding to theNt smallest ei I The ONC
. HY . T genvalues. The
comppnenlS, \-€. E {SS } = Ly, Thus, knowing7 the design of the impulse shortening filter is summarized in &abl
covariance matrix can be expressed as

2.
®c =TT +02Ing (11)

Algorithm 2 ONC design of the impulse shortening
Given this knowledge our aim is to design a linear fil&lY) ~1. Determine®
of length Lg such that the concatenation of filter and channeb. petermine an appropriate TIR (¢) by EVD on ©
> o E(¢)T(¢—1') has less effective memory than the channel. petermine the equalizéE(¢) by (16)
itself. Due to the lack of space in this section we only discus
the general principle of linear space-time impulse shamgen
without gdetailed discussion. A comprehensive overview i@ og

this field can be found in [8] and a detailed derivation of the h he f ion h dealt with th .
herein proposed impulse shortening technique is given]in [9 Whereas the former two section have dealt with the estima-

Let tion and equalization of the temporal channel charactesist
in this section we focus only on identifying the spatial part
V() = ZE(Z’)T(ﬁ — 0 +ko) VOL<LE<Ly (12) Starting from the decomposition (4), we have
E/

x = Sb (17)

be the reduced length target impulse response (TIR) param-
eterized by its lengthl.yy < Ly, an arbitrary delay ofk 2§ = Lg + Ly — Lv + ko



whereb? is a vector withNy statistically independent randomAlgorithm 3 JADE
variables as entrie§ is an Nt x Nt invertible spatial mixing 1: Determine the pre-whitening matri by Cholesky de-
matrix andn is noise. composition

The general approach of independent component analysés Estimate the cumulant matrix s€Q,;;[0 < i,j < Nt}
(ICA) consists of the two steps at first whitening the ob-3: Determine the separation matri by jointly diagonaliz-

served signalk, e.g.x = Cx with E {xx"} = Iy, and ing {Q;;]0 < i,j < Nt} via Jacoby algorithm
afterwards finding an unitary separation matAx such tha’

the components of = Ax are mutually independent. Wh @) (b)

the whitening matrixC might be easily found by the inver (Sm]}§/i)(k ~1))
Cholesky factors of the covariance matkixxx’ }, we have s, S su

to establish a statistical measurement of the indepen

for the second part of ICA. Witth being an independe a0 s,

non gaussian random vector (as stated above), we ci s 5

empirical function f(b) to be an appropriate contrast Suv (50, P ()
ICA, if f(b) < f(Pb) is satisfied for any matriX with oL
equality only if z = Pb is a permutation ofb accordin Fig. 2. Trellis segment in JVD (a) and JVD/LMS (b)

to the definition in (3). In other words the contrast beco
minimum, if there is no statistical connection among thgls
elements ofz. WhereW(Z) = ZE’ E(ZI)T(E -+ ko)A, Lw = Lv and
An efficient batch algorithm referred to asint Approxi- 1(k) = &1ng (k—ko) is white noise, the maximum likelihood
mate Diagonalization of Eigen-matrices (JADE) was propose Sequence estimator is given by
by Cardoso [5]. This method is essentially based on the Hi 2(0), -, 2(K)] = arg minz (k) = Wizry (k)| (25)
order cumulant contrast .
fIAPE(y) = Z |Cum(yi’y;f7yk,y;‘)|2_ (18) Due to the finiteness of the signal alphabet and the con-
ijhiFiikl volutional structure ofWr,,, the desired sequence can be
efficiently found by trellis search techniques, e.g. thentoi
Viterbi detector (JVD). In Fig. 2 (a) a segment of a trellis
diagram is illustrated.
Each branch in Fig. 2 connecting two states is associated to
a hypothesis foe., (k), wherez,,_,,, denotes the hypothesis
cum(yi, y5, Y yi') (19) corresponding to the branch from theth state to thev-
_ E{%y;%m*} —E{yiy;}E{ykyl*} (20) th state. The standard Viterbi algorithm calculates (25) by

. . . recursively updating the metric
— E{yaw} E{vjui} —E{vyi Y E{wey;} . (21) , ,
- . my, (k) = min(my, (k= 1) + [[e(k) = Wiz,u[I7). - (26)
Defining the cumulant matrix H
. I . o In order to deal with non or imperfect CSI, the JVD/LMS
Qi = E{majxx"} —E{zaj} B (22) approach embeds a LMS channel adaptation within the metric

— E{azx}E{2jx"} —E{2jx} E {2:x"}(23) calculations. As illustrated in Fig. 2 (b) the estimat’ (k) is
assigned to the-th node at instancg and estimaté)l(“”) (k)

Cumulants are statistical parameters describing thecpéat
distribution of random variables. The fourth order cumt
of zero mean and symmetrically distributed random varg
(as given in our case) is defined by

we may express the desired cumulantsyof= Ax with ¢ ! . L
A = |ai,---,an,] being an arbitrary unitary matrix as'S assigned to the branch connecting thth node at instance
- I Y T

cum(yi, v, yi, yt) = allQy;a;. Thus, the above contrast isk —1 and thev-th node at instanck. According to the partic-
(2 VRE ) e - . . 1 . . .
minimized by diagonalizing jointly the set of all cumulant!lar node and the instandeeach of the considered estimates
matrices{Q;;|0 < i,j < Nt}. A common technique for correqundsto adl_fferent r_lypo:dgﬁ)ncal signal sequenm@rG
finding those left and right multipliers jointly diagonatig a the previously obtained estimake,"’(k—1) and the step size
set of Hermitic matrices is the Jacoby algorithm. The oledin & the LMS adaptation yields

matrix A is the desired separation matrix, wher€as' A" = yj)(n=v) () (27)
S is an estimate of spatial mixing matrix. The steps of JADE () () H
are summarized in 3. = Wk-1)+A (r(k) - Wi (k — 1)lev) Zy-
E JVDILMS ReplacingV; by the estimate the metric calculations becomes
Starting from the reduced length channel model my (k) = ml}n(mu(k—l)-i-Hr(k)—Wl('HV)(k)S;HuHQ) (28)
r(k) = Wz, (k) + (k) (24) and with p,;, being the index minimizing (28) the channel

estimate associated to theth state is given by
3For the sake of readability we have dropped the time inélei the

following. WY (k) = W= (k). (29)



computational complexity but also deliver better perfonce
in terms of FER.

V. CONCLUSION

The proposed scheme combining statistical and trelligdbas
methods for equalizing and estimating blindly frequency se
lective MIMO systems has shown considerable performance.
In fact, purely statistical methods suffer from the disrepaf
the a-priori known source statistics (finite alphabet cbm,
whereas purely trellis-based approaches cannot be applied
MIMO environment without appropriate initialization. Rher-
more, the computational effort consumed by Viterbi detercti
can be drastically reduced by applying a blindly designed
linear impulse shortening filter. Thus, our method provides
low computational complexity as well as high quality data
estimates.
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Fig. 3. BER vs. SNR with perfect CSI (solid line) and blind gtied line); 1]
system parameter: BPSKNg = 6 x N7 = 4) MIMO channel of length
L = 3 with i.i.d. gaussian channel gains, frame length= 200

(2]

The JVD/LMS algorithm consists of the following steps sum-

marized in Alg. 4. (3]

Algorithm 4 JVD/LMS [4]

1: Initialize m,(0) = 0 and Wl(“) (0) (by zeros or an initial
estimate) for anyu.

2: for k=1:K+L-1 do 6]

3:  Perform a LMS adaption of the channel estimates b){
(27) for any admissible state transitipn— v Y

4:  Calculate the metrien, (k) by (28) for anyu

5. Update channel estimates by (29)

6: end for

(8]

IV. NUMERICAL RESULTS [9]

As already mentioned in the previous section, blind data
detection always suffers from a permutation and phase ambi-
guity. In order to fade out these effects, we have fitted the
final detection result in the best way in terms of possible
permutations and complex scalings. Figure 3 shows the frame
error rate vs. the SNR for different target impulse lengths
Lv. A reference for the proposed blind algorithm is given
by the solid curves, where we presumed perfect CSI. The
dashed curves exhibit the results of the herein proposed bli
receiver. The caséy = 1 involves that within the JVD/LMS
step instantaneous maximum likelihood detection and LMS
channel adaption alternates. Comparing the FER¢f= 1
and Ly = 2 an apparent gain by approximately 8 dB can
be observed, whereas contrary to the reference curves the
performance in case afy = 3 might become worse than
in case of Ly = 2. Obviously, JVD/LMS is more sensitive
to an initial channel estimation error when the considered
effective channel order is large. Therefore, the prepended
impulse shortening filter IS-1 may not only provide lower
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