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Abstract— Within this paper graph based non-coherent de-
coding algorithms for LDPC encoded systems are proposed. We
study a class of LDPC codes suitable for non-coherent detection.
On the basis of the related graphs a non-coherent decoding
algorithm with variable trade-off between computational com-
plexity and BER performance is derived. The proposed scheme
is also capable to deal with pilot symbols if available. Finally,
the excellent performance of the proposed methods is verified by
simulations.

I. I NTRODUCTION

Non-coherent transmission concepts are attractive in situa-
tions where no information on the current channel phase is
available at the receiver. Considering rotationally symmetric
modulations, e.g. PSK or QAM, the transmitter has to pre-
process the transmit signal, in order to enable the receiverto
compensate the indeterminacy of the channel phase. Although
differential pre-coding is most common, channel coding may
serve for this purpose as well. Thus, in [1] appropriate
channel codes for non-coherent transmission were searchedby
simulated annealing, and in [2] a class of convolutional codes
mapped ontoM -PSK symbols was presented under the term
”non-coherent coded modulation”. Recently, this approachwas
extended to non-coherent block coded trellis coded modulation
[3].

An essential aspect of non-coherent systems is the effort
which has to be spent by the receiver in order to obtain
reliable estimates of the transmitted data. An incremental
metric for performing maximum likelihood sequence detection
was derived in [4]. Unfortunately, the entire history of the
transmitted signal has to be taken into account for calcu-
lating the increment which yields very high computational
complexity. Thus, the authors suggested to limit the size of
the instantaneous observation window, in order to keep the
effort low.

Recently, we observed that a certain class of low density
parity check (LDPC) codes are also suitable for channel-
blind data transmission [5]. LDPC codes invented by Gallager
in 1963 [6] and rediscovered by MacKay in 1999 [7] are
well known for their excellent error correction capabilities.
As demonstrated in several contributions, e.g. [8], [9], near
Shannon limit performance can be achieved using graph-based
decoding techniques as e.g. the sum-product algorithm [10].
Whereas in [11], [5], [12] the redundancy of the LDPC code
was exploited to blindly (without the assistance of pilot sym-

bols) identify the channel, in this paper we will present a non-
coherent graph-based decoding algorithm delivering directly
soft estimates of the transmitted data without estimating the
channel phase explicitly.

This paper is organized as follows. In Section II we present
the system model. Preliminaries on non-coherent maximum
a-posteriori (MAP) decoding are discussed in Section III. In
Section IV we study appropriate settings of LDPC codes for
non-coherent transmission. A class of non-coherent graph-
based LDPC decoding algorithms is derived in Section V.
The performance of the proposed method is evaluated by
simulations in Section VI. Finally the paper is concluded in
Section VII.

Throughout this paper we use the following notation: Col-
umn vectors and matrices are denoted by small and capital
boldface letters, e.g.a andA, respectively.1m is the all-ones
vector of sizem. The upper indices “T ” and “H” stand for the
transpose and Hermitian operation, respectively. Calligraphic
letters denote sets1, e.g.A. The union of two sets is denoted
by the operator∩, e.g.

A ∩ B = {a ∈ A, b ∈ B}

and the union ofI sets is denoted by

I−1
⋂

l=0

Al = A0 ∩ · · · ∩ AI−1.

The additive combination of two sets is denoted by the
operator⊕, e.g.

A⊕ B = {a + b|a ∈ A, b ∈ B}

and the additive combinations ofI sets is denoted by

I−1
⊕

l=0

Al = A0 ⊕ · · · ⊕ AI−1

.

II. SYSTEM MODEL

We consider a binary regular(λ, ρ, N, K)-LDPC codeC
of code rateK/N defined on the parity check matrixH ∈
{0, 1}M×N ; M ≥ N−K with λ andρ is the number of ones
per column and row therein, respectively. The corresponding

1With exception ofCN (µ, σ2), which denotes the complex normal distri-
bution with meanµ and varianceσ2 .



generator matrix is given byG ∈ {0, 1}N×K; mod2(HG) =
0. c = [c0, · · · , cN−1]

T is a binary code word fromC ands =
[s0, · · · , sN−1]

T its BPSK representation in signal space via
the mapping0→ 1 and1→ −1. Each admissible codewordc
and, consequently, each corresponding sequences is assumed
to be transmitted with equal probability1/|C|, where|C| is the
cardinality of the code. The channel output can be expressed
as

r = sejφ + v, (1)

whereφ is the unknown phase of the channel uniformly dis-
tributed within the interval[0, 2π) andv = [v0, · · · , vN−1]

T is
i.i.d. zero mean complex gaussian noise withvn ∼ CN (0, σ2

n).
We define the subsetCn(a) by

Cn(a) = {c ∈ C|cn = a} (2)

and, equivalently, the subsetSn(b) by

Sn(b) = {s← c ∈ C|sn = b}. (3)

Note that with the mappinga→ b the members of setSn(b)
are the signal space counterparts of the members of the set
Cn(a).

III. PRELIMINARIES

The a-posteriori log likelihood ratio (AP-LLR) w. r. t.cn is
defined by

Ln = log

(

Pr{cn = 0|r}

Pr{cn = 1|r}

)

. (4)

Due to the Bayesian rule the a-posteriori probabilityPr {cn|r}
can be decomposed by

Pr {cn = a|r} =
∑

c∈Cn(a)

Pr {c|r}

∝
∑

c∈{1,0}N

∀cn=a

Pr {c} p(r|c),
(5)

where Pr {c} is the a-priori probability indicating whether
a sequencec ∈ {0, 1}N is a member of the codeC and
p(r|c) = p(r|s); c → s is the non-coherent likelihood. Since
all codewordsc ∈ C have to satisfyM parity check sums
h

T
mc = 0, wherehm is them-th column ofHT , we have

Pr {c} =
1

|C|

M
∏

m=1

δ(mod2

(

h
T
mc)

)

, (6)

whereδ(.) is the Kronecker delta operator. The non-coherent
likelihood functionp(r|s) = p(r|c); s→ c is given by

p(r|s) =

∫

p(r|s, φ)p(φ)dφ

=
1

(πσ2
n)N

∫ 2π

0

exp

(

−
‖r− ejφ

s‖2

σ2
n

)

dφ

=
1

(πσ2
n)N

exp

(

−
‖r‖2 + ‖s‖2

σ2
n

)

I0

(

2|rH
s|

σ2
n

)

,

(7)

where I0(.) is the zeroth-order modified Bessel function of
first kind. As the amplitude of the considered BPSK carries

no information, i.e. ‖s‖2 = const. ∀ s ∈ {1,−1}N ,
and the modified Bessel function is monotonically increasing
for positive arguments, the non-coherent likelihood function
depends only on the transmitted sequences by the magnitude
of the inner productrH

s. Replacing (5), (6) and (7) in (4) we
get

Ln = log







∑

s∈Sn(1)

I0(2|s
H
r|/σ2

n)

∑

s∈Sn(−1)

I0(2|sHr|/σ2
n)






. (8)

Alternatively, the desired LLRs can be approximated by the
max log likelihood function

Ln ≈ log





max
s∈Sn(1)

I0(2|s
H
r|/σ2

n)

max
s∈Sn(−1)

I0(2|sHr|/σ2
n)





≈ 2

(

max
s∈Sn(1)

|sH
r| − max

s∈Sn(−1)
|sH

r|

)

/σ2
n.

(9)

The latter expression seems to be more reasonable for practical
applications, since the number of summands in the numerator
and the denominator of (8) may become very high. However,
finding the sequences ∈ Sn(a) maximizing |rH

s| for each
n = 0, · · · , N − 1 still requires a high computational effort as
pointed out in the introduction.

Furthermore, the non-coherent likelihood function (7) obvi-
ously is invariant of a change of sign, i.e.p(r|s) = p(r| − s).
In order to avoid this sign ambiguity, the channel code has
to be designed properly. Asymmetric LDPC codes are well
suited for the purpose as we will see in the following section.

IV. A SYMMETRIC LDPC CODES

An admissible signal sequences is unique in sign, if the
code satisfies the following necessary condition.

Necessary condition:Let c ∈ C be an arbitrary admissible
codeword associated to the sequences. Then, its negation̄c
associated to−s must not be within the code space, i.e.c̄ 6∈ C.
We call codes excluding symmetric pairs(c, c̄) “asymmetric
codes”.

From the next two theorems an easy rule for constructing
LDPC codes satisfying the above condition can be deduced.

Theorem 1: Any binary linear code not containing the all-
ones sequence is asymmetric.

Proof: The sum of symmetric binary sequences pair(c, c̄)
in GF(2) results in the all-ones sequence, i.e.

1N = mod2(c + c̄). (10)

Due to the linearity of the code each linear combination of
sequences within the code space has to yield also a sequence
within the code space. Therefore, any binary linear code not
containing the all-ones sequence might either includec or c̄

but not the two in common.
Theorem 2: A binary linear code is asymmetric, if the code

is associated to a parity check sum with an odd number of
summands.

Proof: Let c be a sequence fromC andh a related parity
check vector containingρ ones, i.e.mod2(c

T
h) = 0. Thenc



has to contain at least one zero, ifρ is odd. Thus, any code
corresponding to at least one parity check sum with an odd
number of summands excludes the all-ones codeword.

The previous theorem induces that asymmetry may also
hold for a local subsequence of the code, e.g. letc̃ be a
subsequence ofc ∈ C consisting only of those elements
participating on an arbitrary odd parity check sum. Thenc̃

is asymmetric and, consequently, the corresponding signal
space representatioñs is unique in sign. Moreover, if a
code includesm disjoint asymmetric subsequences, then the
minimum number of zeros within any admissible codeword
c is equal or larger thanm. We may refer this value as the
degree of asymmetry.

Due to the above considerations LDPC codes with an odd
number of ones per row in their parity check matrixH seem to
be an appropriate choice for non-coherent block transmission.
Herein, we consider a regular Gallager random design for the
LDPC matrix, which can be described as follows. LetH0 be
a (N/ρ×N) matrix with ρ subsequent and exclusive ones in
each row, e.g.

H0 =











1 · · · 1
1 · · · 1

. . .
1 · · · 1











(11)

and H1, · · · , Hλ−1 randomly generated column permutations
of H0. Then the parity check matrix of an(λ, ρ, N, K) LDPC
code is given by

H =







H0

...
Hλ−1






(12)

V. NON-COHERENT LDPC DECODING ONGRAPHS

Recall that for exactly determining the desired APP-LLRs
Ln; n = 0, · · · , N − 1 (cf. (4)) all inner productssH

r have to
be calculated and sorted with respect to the respective sets
Sn(1) and Sn(−1). In this section, we derive a decoding
method termed as non-coherent decoding on graphs (NCDG),
which evolves in parallel all required inner products on a
graph. As we will see, the proposed algorithm works perfectly
if the graph is free of cycles, whereas it provides at least good
approximates in the non-cycle-free case. The processing of
our method as well as of the most common LDPC decoding
techniques can be illustrated on a so called Tanner-graph (Fig.
1). Each of theN unknown variablescn is represented by
a variable node depicted by a circle and each of theM
parity check sums is represented by a check node depicted
by a square. Each check node is connected by an edge to
those variable nodes, which participate in the particular parity
check sum. The setM(n) contains the indices of the check
nodes connected to then-th variable node and the setN (m)
contains the indices of the variable nodes connected to them-
th check node. NCDG is an iterative algorithm where infor-
mation (messages) is alternately exchanged between variable
and check nodes along the edges. The message transferred

0

0

m

n

M-1

N-1

Fig. 1. Tanner-graph

from check nodem to variable noden regardingcn = x is
represented by the setEm→n(x) and, equivalently, the message
transferred from variable noden to check nodem regarding
cn = x is represented by the setEn→m(x). At initialization
each message set is empty, whereas its cardinality increases
with foregoing iterations. At each check node (and, similarly,
at each variable node) the outgoing messages are updated by
processing all incoming messages except for the incoming
message coming from the direction of the outgoing message.
Defining the single element setsOn(x), n = 0, · · · , N − 1 by

On(0) = −rn andOn(1) = rn, (13)

the message update rules at variable and check nodes are given
in the following way: At each variable node the outgoing
message sets are determined by

En→m(x) = On(x) ⊕





⊕

µ∈M(n)/{m}

Eµ→n(x)



 (14)

and at each check node by

Em→n(x) =
⋂

mod2(
P

cν)=x





⊕

ν∈N (m)/{n}

Eν→m(cν)



 . (15)

Each set represents a selection of local inner productss̃
H
r̃,

where s̃ and r̃ are subsequences ofs and r, respectively.
During iterations the cardinality of the message sets may grow
with power of λ − 1 at each variable node update and with
power of ρ − 1 at each check node update according to the
length of the local subsequences. Thus, the computational
complexity of the proposed method is very high and not
feasible in practical systems. However, if the graph is free
of cycles, after a finite number of iterations the cardinality of
the message sets stays steady and the desired inner products
can be obtained by

{sH
r|s ∈ Sn(a)} = On(x)⊕





⊕

µ∈M(n)

Eµ→n(x)



 . (16)

The NCDG approach is summarized in Alg. 1.



Algorithm 1 Non-Coherent Decoding on Graphs

1: InitializeOn(x) by (13) and set the message sets to empty
2: repeat
3: Variable node update: CalculateEn→m(x) by (14)
4: Check node update: CalculateEm→n(x) by (15)
5: until stopping criterion is satisfied
6: Determine a proper selection of inner products by (16)
7: Calculate the desired LLRs by (8) or (9)

A. J-NCDG

In order to find a reasonable trade-off between computa-
tional effort and decoding performance, we suggest to limit
the cardinality of the current message set at each variable
and check node update. LetJ denote the maximum tolerable
cardinality of a message set. In order to keep only thoseJ
members in the particular message set which are the most
promising ones, we define the clipping function

Y = clip|.|(X , J), (17)

where the outputY consists of thoseJ elements inX with
largest magnitude. Including this function in the variableand
check node update yields Alg. 2 and Alg. 3. Note that

Algorithm 2 Variable node update

1: Initialize En→m := On(x)
2: for all µ ∈M(n)/{m}, x ∈ {0, 1} do
3: En→m(x) := En→m(x) ⊕ Eµ→n(x)
4: En→m(x) := clip|.|(En→m(x), L)
5: end for

Algorithm 3 Check node update

1: Initialize Em→n(0) = {0} andEm→n(1) = {}
2: for all ν ∈ N (m)/{n} do
3: Em→n(0) := Em→n(0)⊕ Eν→m(0)

∩ Em→n(1)⊕ Eν→m(1)
4: Em→n(0) := clip|.|(Em→n(0), J)
5: Em→n(1) := Em→n(0)⊕ Eν→m(1)

∩ Em→n(1)⊕ Eν→m(0)
6: Em→n(1) := clip|.|(Em→n(1), J)
7: end for

the computational complexity of the modified update rules is
linear in J .

B. J-NCDG with pilot assistance

Up to now we assumed that the receiver has no pre-
knowledge of transmitted data. However, if pilot symbols are
available, the decoder may exploit this fact. Thus, in this
section we propose an extension of theJ-NCDG termed as
J-NCDG with pilot assistance (J-NCDG-PA).

Let spilot be a pilot sequence,rpilot = spilote
jφ + npilot

be the corresponding observation andq = s
H
pilotrpilot be the

inner product of the pilot sequence and the corresponding

TABLE I

NON-COHERENTLDPC DECODING ON GRAPHS

NCDG J-NCDG J-NCDG-PA

V-update Eq. (14) Alg. 2, clip. (17) Alg. 2, clip. (18)
C-update Eq. (15) Alg. 3, clip. (17) Alg. 3, clip. (18)
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Fig. 2. BER vs. SNR. Simulation parameters:(λ = 3, ρ = 5, N =
100, K = 40) random Gallager LDPC code; maximum message set size
J = 4.

observation. On the one hand this inner productq has to be
taken into account for the clipping criterion used at message
updating (cf. Alg. 2 and Alg. 3), i.e. we modify the clipping
function

Y = clip|.+q|(X , J) (18)

such that the outputY consists of thoseJ elements ofX with
largest absolute|x + q|, x ∈ X . Hence, the decision which
elements inX are worth keeping is additionally supported
by the pre-known pilot sequence. On the other hand the
pilot sequence should be considered in a similar way at the
calculation of the LLRs in (8) or (9) by addingq.

The variable node and the check node updates of the
non-coherent decoding methods discussed in this paper are
summarized in Table I.

VI. N UMERICAL RESULTS

Fig. 2 and Fig. 3 shows the BER performance ofJ-NCDG,
J-NCDG-PA and coherent receivers (least squares channel
estimation, coherent MAP detection and LDPC-decoding via
the sum-product algorithm). In Fig. 2 the transmitted data were
encoded by a(λ = 3, ρ = 5, N = 100, K = 40) LDPC
code with random Gallager design, whereas in Fig. 3 a regular
(λ = 2, ρ = 3, N = 96, K = 33) LDPC code optimized in
terms of a maximum girth [13] was used. In order to keep the
comparison fair in terms of bandwidth efficiency, the LDPC
code was punctured, whenever pilots are embedded. Thus, the
total blocklength and the amount of information carried by a
block of N symbols stay always constant.



0 1 2 3 4 5 6 7 8
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

SNR [dB]

B
E

R

coh.
J-NCDG
J-NCDG-PA 4
J-NCDG-PA 8
coh. PA 4
coh. PA 8

Fig. 3. BER vs. SNR. Simulation parameters:(λ = 2, ρ = 3, N = 96, K =
33) LDPC code; maximum message set sizeJ = 4.

As reference, we consider the coherent case with perfect
channel state information at the receiver (“coh.”). The coherent
schemes with pilot assisted channel estimation are denotedas
“coh. PA 4” and “coh. PA 8”, where 4 and, respectively, 8
pilot symbols were embedded within the transmitted sequence.
Similarly, “J-NCDG-PA 4” and “J-NCDG-PA 8” denote
the pilot assisted version of NCDG, whereas “J-NCDG” is
without pilot assistance. The maximum message set size is set
to J = 4 for all NCDG schemes.

Considerable performance of theJ-NCDG method can be
recognized in Fig. 2. However, a gain of approximately2dB
can be achieved by using pilot symbols. In each case the
pilot assisted version NCDG is superior to their coherent
counterparts.

As observed in Fig. 3 the second LDPC code is more
sensitive against puncturing. Thus, the performance becomes
poor in case of 8 pilot symbols for bothJ-NCDG-PA and the
coherent receiver. The effect of puncturing is moderate in case
of only 4 pilots, though the quality of the channel seems to be
not sufficient for the coherent scheme. Remarkable is the fact
that J-NCDG without pilot assistance attains the best results
and yields a gap from less than0.5dB to the ideal case. Finally,
in Fig. 4 the effect of the maximum message set cardinalityJ
is examined. With increasingJ the BER performance becomes
better, though beyondJ = 4 the gains are only moderate.

VII. C ONCLUSIONS

We have presented a new non-coherent detection algorithm
for LDPC encoded systems. The algorithm is variable in terms
of a trade-off between computational complexity and BER
performance. Moreover, the algorithm can be modified in such
a way that pilot symbols can be utilized if available. The
algorithm shows a superior performance in comparison to
coherent receivers.
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Fig. 4. BER vs.J . Simulation parameters:(λ = 2, ρ = 3, N = 96, K =
33) LDPC code; SNR =5dB
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