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Abstract— Iterative channel estimation and data detection is a
very useful method to improve the channel estimation quality
without sacrificing the bandwidth efficiency. Since both the
known training symbols (non-blind) and the unknown data
symbols (blind) are used for channel estimation, correspond-
ing techniques are referred to as semiblind. If the channel
estimator and data detector are both optimal in the sense of
maximume-likelihood criterion, we may call the algorithm as
maximum-likelihood (ML) semiblind channel estimation (SBCE).
This paper deals with ML-SBCE for frequency-flat multi-input
multi-output systems with focus on the channel estimation mean
squared error (MSE) analysis. Through semi-analytical efforts,
we will show that ML-SBCE is biased at low SNR and tends
to be unbiased at high SNR. The reasons of biasing are the
erroneous data detection and the correlation between the noise
and the detection errors. Besides, we will show that the MSE
performance of ML-SBCE is also influenced by the noise-error
correlation. Based on these analysis, possibilities to compensate
the biasing as well as improve the MSE performance are pointed
out.

I. INTRODUCTION

The dramatic capacity gain of multi-input multi-output
(MIMO) channels w.r.t. single-input single-output (SISO)
channels have been shown by numerous literatures [1]-[3], in
an environment rich of multipath propagation. However, in
practice it is a challenging task to fully exploit the MIMO
channel capacity. One difficulty exists in the contradictory
requirements of reliable channel estimation and high system
bandwidth efficiency. Due to multi-antenna interferences, a
MIMO receiver is generally more sensitive to the channel
estimation errors than a SISO one, meanwhile the number
of channel coefficients to be estimated is also much larger
than that of a SISO system. Therefore, in order to achieve
a desirable bit error ratio (BER) performance a long training
will be necessary. On the other hand, the demand of high
bandwidth efficiency forces the training to be as short as
possible. Hassibi et al. showed in [4] that pure training-based
channel estimation can be highly suboptimal from the informa-
tion theoretic point of view. In comparison, semiblind channel
estimation tries to extract the channel state information carried
by all observations, and is able to achieve very low MSE with
using just a few training symbols. Exchanging the information
between the channel estimator and the data detector iteratively,
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a SBCE algorithm refines the quality of channel estimates and
data decisions in a recursive manner. Simulation results of such
channel estimators can be found in a number of literatures [5]-
[8], where the huge SNR gain by using SBCE was shown.
While, theoretical analysis available from the literature so
far is still not sufficient. Buzzi et al. discussed in [9] the
behaviour of SBCE algorithms with linear data detectors, and
provided closed form of formulas for predicting the MSE
performance. However, one important assumption made by the
authors, that the correlation between the noise samples and
the detection errors is negligible, is actually not appropriate.
Indeed, our investigation shows that this noise-error correlation
has a strong impact both on the biasing and the MSE of
semiblind channel estimators.

In this paper we provide analytical results for the SBCE
algorithm with a ML channel estimator and a ML data
detector. As ML detection provides the performance limit for
all data detectors, the results of ML-SBCE can be taken as
the upper bound for algorithms with other types of detectors.
Since a literal derivation of the mean value and the MSE is
mathematically far too complicated, many approximations are
made in order to get neat expressions. Nevertheless, computer
simulations will show that these approximations work very
well and are accurate for the SNR range of practical interest.

The paper is organized as follows: Sec. Il gives the channel
model, and Sec. Il introduces the ML-SBCE algorithm. In
Sec. 1V, detailed performance analysis together with numerical
results are provided, and Sec. V concludes the paper.

Il. CHANNEL MODEL

Let Ny denote the number of receive (Rx) antennas and Nt
the number of transmit (Tx) antennas, the equivalent discrete-
time model of a (N x N1)-MIMO channel (including transmit
and receive filter, physical channel and baud-rate sampling) is
given by

r(k) = H(k)s(k) + n(k), (1)

where k is the discrete time index. The channel input vector
s(k) € CNt>x1 consists of BPSK' modulated symbols, and

1BPSK modulation is assumed throughout the paper for the sake of simple
analytical expressions.



r(k) € CM=x1 denotes the channel output. n(k) € CVrx1
is a zero-mean white Gaussian noise vector with covariance
E{n(k)n"(k)} = 02Iy,, Where I, is the identity matrix
of order Ni. The channel matrix H € CNe*NT js assumed
to be constant over K symbol periods (block fading), so
that the transmission of K consecutive vector-symbols can be
compactly written as

R =HS +N, O]
where R = [r(0),--- ,r(K —1)], S = [s(0),--- ,s(K —1)]
and N = [n(0),--- ,n(K —1)].

Assuming that the training is inserted into the preamble of
each data burst, the symbol matrix can be expressed as

S =[S, S1], ®3)

where St contains training symbols spanning K time slots,
and S; contains info symbols spanning K time slots. Corre-
spondingly, the channel output can be also written as

R= [RT, RI] = [HST + N7, HS; + NI]. 4

We choose this notation for easy algorithm description and
performance analysis in the remainder of this paper.

I1l1. SEMIBLIND CHANNEL ESTIMATION

Traditional algorithms use only the training to perform
channel estimation, while a semiblind channel estimator takes
the data symbols also into account. Since the data symbols
are practically unknown, before they can be used for channel
estimation, the receiver has to perform a detection in advance.
Thus, the task of channel estimation changes into joint esti-
mation of channel and data symbols. Borrowing ideas from
Turbo processing, this procedure can be done in an iterative
manner:

1) Initial training-based channel estimation;

2) Given the channel knowledge, perform data detection;

3) Given the data knowledge, perform channel estimation

by taking the whole data block as a virtual training;

4) Repeat step 2 and step 3 until a certain stopping criterion

is reached.
By refining the channel estimate and the data decisions in
a recursive manner, considerable performance gain can be
achieved step by step. In the following, the issues of channel
estimation and data detection will be tackled respectively.

A. Channel Estimation

The least-squares (LS) algorithm and the minimum mean
squared error (MMSE) algorithm are quite popular for chan-
nel estimation. Given perfect knowledge of the transmitted
symbols (e.g. the training), a LS algorithm delivers unbiased
channel estimates, while a MMSE algorithm delivers biased
ones. For the sake of simplicity, in this paper we restrict ourself
to the LS algorithm on account of its unbiasedness. A LS
channel estimator minimizes the distance between the channel
output and its noiseless hypothesis given by

I/-\I:argngn{HR—ItISH%} = RS’ (SSH)il7 (5)
H

which in turn maximizes the likelihood function p(R|H, S),
and thus is often called a ML channel estimator.

For SBCE, the initial channel estimation is performed over
the training symbols only:

Hinie = RpSY (Sng)_l ; (6)

while in the later iteration, the knowledge of data symbols will
also be utilized:

A= RS ($87) ™

with S = [St,S;]. If the amount of detection errors in S;
is small enough, (7) will hopefully produce a better channel
estimate than (6) in the sense of lower MSE.

B. Data Detection

The classical nonlinear receiver is the ML detector which
searches for the most likely data sequence according to

SwuL :arggnin{HRfITIASiHi}, (8)
Ses

where S denotes the set of realizations with |S| = 2Nt <K,
The ML detector delivers perfect performance compared to
linear algorithms, such as zero-forcing and MMSE, but has a
complexity proportional to 2. For real-world applications,
the most attractive solutions fall into a blended class, that can
combine the advantages of linear and nonlinear algorithms,
and achieve desirable performance with affordable complexity.
Due to limited space, we restrict ourself to the SBCE algorithm
with a LS channel estimator and a ML data detector.

IV. PERFORMANCE ANALYSIS OF CHANNEL ESTIMATION

In this section, we provide numerical results and detailed
analysis concerning the biasing and the MSE of the maximum-
likelihood semiblind channel estimator.

A. On the Biasing of ML-SBCE
It is easy to find that equation (6) always delivers an
unbiased channel estimate:
E{Hu.} =H+E{Ng}S¥ (S;82) " =H.  (9)

While, it remains to be an interesting question whether H in
(7) is biased or not. Given sufficient large block length, the
following approximation

SST ~ K1y, (10)
should be valid, then H can be rewritten as
~ 1  ~ 1 ~ ~

H~ —RS” = — (HSS” + NSH). 11

= K( + ) (11)

Given optimal training (cf. [10]), and let P, denote the symbol
error ratio at the output of the data detector?, we have

St = Krln,
E{SI/S\II{} = (]- - 2PS>KIINT;

(12)
(13)

2Here we assume that the detection error ratios for the data from each Tx
antenna are equivalent, which is true on average.
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Fig. 1. BIAS vs. SNR, with Np = Ng = 4, K = 200, K1 = 4.

and consequently
E{sS"} = EB{Ssi}) +E{sS!}

= (Kr+(1-2P)K7) Iy,  (14)

Noting that the noise samples are independent with the training
and the data symbols, and let E; = Sy — S; denote the symbol
estimation error, we obtain
E{NS"} E{N.S¥ + Ni(S; + E)?}
= B{N:E{'}.

(15)

Combining (14), (15) and (11), the mean value of H can be
finally approximated by
Kr + (1 - 2P,)K]
K

where the right term actually indicates the correlation between
the noise samples and the detection errors. It is obvious that H
tends to be unbiased for high SNR as both P, and E; become
zero, while biased at low SNR. Contrary to the statements
in [9], the noise-error correlation E{N;E;”} should not be
assumed to be zero, since the noise is exactly the cause
of detection errors. This statement will be attested by the
following numerical results.

Given a randomly chosen channel matrix, Fig. 1 shows the
simulation results of the degree of biasing defined as

~ 1
E{H} ~ H+ EE{NIEIH}, (16)

BIAS = |H - E{H}|} (17)
and the degree of noise-error correlation defined as
o 1
NEC = || -E{N:E "}, (18)

versus SNR, respectively. “BIAS-Anal.” in Fig. 1 denotes the
analytical value of BIAS by replacing E{H} in (17) with
the approximation given in (16). As expected, ML-SBCE is
biased at low SNR while unbiased at high SNR, and the
degree of biasing decreases as the noise power decreases. The
noise-error correlation is not negligible, and indeed its value

is significant w.r.t. BIAS. An interesting observation is that
the biasing due to NEC is partially compensated by the left
term in (16), which means that the correlation pattern between
the noise and the errors is determined by the channel matrix.
The distance between BIAS and “BIAS-Anal.” arises from the
approximation given in (10).
B. Biasing Compensation

Since certain types of data detectors may benefit from
unbiased channel estimates, it makes sense to compensate the
biasing of a semiblind channel estimator. As we have seen
from equation (16), the ML-SBCE is biased by a positive
scalar and an additive noise-error correlation. Given a system
with low-rate channel code, if we would feedback the decoder
output to the channel estimator, then the noise samples and
detection errors will be quasi independent. Under such a
situation, the right term in (16) will disappear, and we can
easily get an unbiased semiblind channel estimator given by

02
- Kr+(1-2P)K;
Due to limited space, we would refer interested readers to [11]
for further details on this topic.
C. Mean Sguared Error

For MIMO systems, the channel estimation MSE can be
defined as®

RS (SSH)~1.

(19)

MSE = E{|[H - H|2}. (20)

Before we start to assess the performance of SBCE, we may
intuitively set a lower bound and an upper limit for the MSE.
First, the lower bound should be given by the LS estimator
when perfect data knowledge is available, which is denoted
by data-based channel estimation (DBCE) hereafter. Second,
if the MSE performance of SBCE is even worse than that of
the pure training-based channel estimation (TBCE), then it is
meanless to perform SBCE. In fact, the MSE curves of TBCE
and DBCE give the Cramer-Rao lower bound (CRLB) for any
unbiased semiblind channel estimators at low and high SNR
(cf. [22)]).

Fig. 2 demonstrates the performance of ML-SBCE given
different number of receive antennas. Without using more
training symbols, the ML-SBCE algorithm achieves a huge
SNR gain w.rt. the pure training-based one. As shown in
Fig. 2, ML-SBCE works very well even when Ng < N, and
is able to provide better channel estimates as Ny increases. It
should be mentioned that a TBCE algorithm does not benefit
from diversity reception at all. As we may notice, the MSE
curves of ML-SBCE touch the one of DBCE at high SNR
range, and the position of this touching point shifts to the left
side as NNy increases. This phenomenon may be interpreted
as follows: the more the receive antennas, the smaller the
SNR value that ML-SBCE needs in order to achieve the same
MSE performance as if all data symbols are perfectly known

3In this paper, all MSE simulation results have been normalized by the
factor of Ng x N for the purpose of fair comparison between systems with
different number of antennas.
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Fig. 2. MSE vs. SNR, Np = 4, K = 200, K1 = 4.

at the receiver. Given Ng = Nt = 4, this touching point*
is approximately at SNR = 3 dB, which deserves to be an
amazing performance. Please note that the number of training
symbols used here is only 4 per burst per Tx antenna, which is
actually the minimum amount of training in order to perform
LS channel estimation. Another important observation is that
the performance of ML-SBCE may exceed the CRLB at low
SNR due to biasing.

Now we try to give an analytical expression of the MSE by

using the following approximation
Si1St' & (1 - 2P Kl (21)

which is accurate if Ny = 1. After some derivations (cf. Ap-
pendix A), we will finally obtain

2P, K1\
MSE =~ < IR ) |H||Z

(03

74};§§Itr{§}%{E{NIE{{}HH}} (22)

B
Nr N 1
oot e BINEL [} )
Y 4

Let «, B3, v and o represent the corresponding items in (22)
respectively, Fig. 3 plots their values versus Es/N, and
compares them to the true MSE values. Surprisingly, o equals
to g for all SNR values, and this insight provides us the
following empirical conclusion

e R{E{NE[ P} } ~ P {HET ), (29)
which again tells us that the pattern of noise-error correlation is
solely determined by the channel matrix, when a ML detector

4The mathematical expression for predicting the position of this touching
point has recently been found, while due to limited space, we would refer
interested readers to [13].
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Fig. 3. MSE analysis, with N7 = Ng =4, K = 200, K1 = 4.

is used. Now, the MSE expression can be further simplified as

NrN- 1

o+ e B{INEL 7,
where the left term coincides with CRLB for high SNR [13]
and gives a tight lower bound of the MSE. At high SNR,
¢ tends to be zero, and thereby the ML-SBCE touches the
lower bound. While at very low SNR, the value of § seems
dominant and tends to be linear w.r.t. the noise power. We may
also notice that, it is ¢ that determines the position where the
MSE line at high SNR transits to the MSE line at low SNR.

Buzzi et al. in [9] assumed the noise-error correlation to be
zero, which leads to

MSE ~

(24)

1 » 1
FE{HNIE{{H%} = ﬁ‘lpsKINRNT ) 07217 (25)

¢

by noting that the elements of E; belongs to {0,+2, —2}.
The curve of ¢ versus Es/Ny is also plotted in Fig. 3, and
obviously we have 6 > ( for the whole SNR range. This
result delivers the message that the noise-error correlation is
not negligible for the MSE. However, as equation (25) does
not hold, a suitable analytical expression remains to be an
open question up to the moment of writing this paper.

Nevertheless, the distance between § and ¢ gives us a hint:
if we could make the detection errors independent with the
noise samples, then a channel estimator with lower MSE might
result. Hopefully, this is the true situation when the decoder
output is fed back for channel estimation. For more details,
we would refer readers to [11].

D. Bit Error Ratio

The ultimate goal of conducting semiblind channel esti-
mation is to improve the system BER performance. Fig. 4
compares the BER performance of systems with and without
SBCE and also the case when perfect channel knowledge is
available. The improvement in channel estimation quality from
executing SBCE does yield significant BER reduction.
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V. CONCLUSIONS

In this paper, the behaviour of the maximum-likelihood
semiblind channel estimator is studied for MIMO systems. An-
alytical expressions for the biasing and the MSE are provided,
together with illustrative simulation results. As we have shown,
ML-SBCE is biased at low SNR while tends to be unbiased
at high SNR, and both its mean value and MSE are highly
dependent on the cross-correlation between the noise samples
and the detection errors. Based on these analysis, possibilities
to compensate the biasing and improve the MSE performance
are pointed out.

APPENDIX
A. Derivation of the MSE Expression
According to (20), the MSE can be written as

MSE

B {(H - B)H - )"}
JH2 — o {H B{E"} |
—e{ B{R}AT} + {3},

where we measure the MSE w.r.t. a certain channel matrix.
Given the approximation in (21) and recalling equation (11),
we get the expression

(26)

o~ Kr+(1-2P)K; 1 anm
H=~ I H+ KNS . (27)
For simplicity, we define
a=Kr+ (1 -2P)Kj, (28)
then the mean power of H can be approximated by
~ 1 SHII2
E{|H[F} =~ ﬁE{HO‘H + NS ||F}
1 an H
= = {o?IHI} + o o{HE{SN"}} (29)

+a tr{E{NS7}H"} + B{|NS" |2} }.

By inserting (27) and (29) into (26), we obtain

MSE ~ (1-)2[H[}
2(a—K) 5
+Ttr{%{E{NsH}HH}}
1 ~
+5z B{INST &} (30)
Noting that
E{INS"|F} = E{INS”+NE{[}}

%

E{|NS™|%} + E{|IN:E{' |}
= KNgNro, + E{|INE{ |}, (31)

and inserting (15) and (28) into (30), we finally obtain

[1]
[2]

[3]

[4]

[5]

[6]

(71

(8]

[]

[10]

[11]

[12]

[13]

2P, K1\ 2
MSE =~ ( IR > |H||Z

4P, K
— o {R{B{NE{ }H" }}
Nr N 1

P}( o2 4+ FE{HNIEIH”%} (32)
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