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Abstract— In this paper we propose a new algorithm which
blindly identifies and equalizes a MIMO system, where all sources
are independently protected against errors by an LDPC-Code.
To this end the proposed method exploits statistical dependencies
caused by the channel code. In contrast to most common blind
source separation algorithms, the new method does not suffer
from a permutation ambiguity. Furthermore, if the channel
code is asymmetric, the suggested method delivers phase correct
estimates of the channel and the corresponding equalizer. The
performance of the presented method will be evaluated by
numerical results.

I. INTRODUCTION

Low density parity check (LDPC) codes are known for
their excellent error correction capabilities in context with
moderate decoding complexity. As demonstrated in several
contributions, e.g. [1], [2], near Shannon limit performance can
be achieved by simple decoding techniques as e.g. the sum-
product algorithm [3]. Due to the low number of bits, which
have to be taken into account in each parity check equation,
LDPC codes are also well suited for blind deconvolution and
channel estimation techniques [4]. This paper addresses the
issue of blind system identification and equalization of MIMO
systems. The proposed method exploits statistical dependen-
cies caused by a LDPC code in order to blindly identify the
channel and simultaneously adjust a linear equalizer.

Most blind source separation (BSS) methods as e.g. [5], [6]
are based on the assumption of statistically independent and
non gaussian distributed sources. The channel causes a linear
superposition of these sources. Thus, as stated by the central
limit theorem, the distribution of the channel output is more
”gaussian” than the channel input. The key idea behind blind
source separation is to design blindly (without channel state
information) a linear equalizer so that the equalizer restores
the statistical independence by decorrelating the equalizer’s
output and making it as less ”gaussian” as possible.

This class of BSS methods suffers from a phase and
permutation ambiguity with respect to the estimated channel
impulse response and the corresponding linear equalizer, since
the gaussian target criterion is invariant of a complex factor
and the equalizer’s outputs can not be uniquely assigned to
the sources. In order to resolve the phase ambiguity, several
contributions [7], [8] have utilized asymmetric mapping con-
stellations. We will show that even with symmetric mapping

constellation the phase can be uniquely determined, if the
channel code satisfies an asymmetric condition. Furthermore,
the channel code can be utilized to make each layer distin-
guishable.

This paper is organized as follows: In Section II the system
model will be presented. Since channel coding plays a key
role for the proposed method, we will discus some required
properties of channel codes and give some definitions in Sec-
tion III. The presented algorithm will be derived in Section IV.
Finally we give numerical results in Section V and conclude
this paper in Section VI.

II. SYSTEM MODEL
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Fig. 1. System Model

As illustrated in Fig. 1, we consider a layered block
transmission of NT independent binary data streams bm ∈
{0, 1}(I×1) of length I , where m = 1, · · · , NT is the layer
index. After encoding each layer independently by a linear
block encoder, we obtain

cm = mod(Gbm, 2), (1)

where G ∈ {0, 1}(I×K) is the channel code generator matrix
with rate Rc = I/K < 1 and cm ∈ {0, 1}K×1. Afterwards,
at each layer the resulting bits are permuted by

dm = Pmcm, (2)

where the permutation matrix Pm ∈ {0, 1}K×K contains
exactly one nonzero element in each row and column. En-
coding and permutation can be summarized by the overall
generator matrix G̃m = PmG. Please note, that the generator
matrix of a certain layer may coincide with any other, but
the permutation matrix of each layer should differ, in order to
make each layer distinguishable from any other.



After mapping the bits into the signal space by BPSK
modulation assigning 0 → 1 and 1 → −1, the channel input
is given by

sm = MapBPSK(dm). (3)

This data can be arranged in the matrix S = [s1, · · · , sNT ]T =
[s(1), · · · , s(K)]. The signal pass through a (NR×NT) MIMO
channel with NR ≥ NT. Collecting NR samples at instance k
the channel output can be expressed as

r(k) = Ws(k) + n(k) (4)

where W = [w1, · · · ,wNT ] is the MIMO channel impulse
response (CIR) and n(k) ∈

�
NR×1 is i.i.d. white gaussian

noise with covariance E{n(k)nH(k)} = σ2
nINR .

III. CHANNEL CODING

Since they are well suited for our purpose, throughout this
paper we consider regular low density parity check (LDPC)
codes for channel coding. A LDPC code is characterized by
a sparse parity check matrix H of dimension (L×K), where
the number of nonzero elements Ω in H is much lower than
the number of zeros. The number of rows in H is at least
L ≥ K − I and H has rank K − I . The relation

mod(HG, 2) = 0 (5)

holds with respect to the corresponding generator matrix. Due
to (5) the parity check sum equation

mod(Hc, 2) = 0 (6)

also holds for any encoded data bit stream c = mod(Gb, 2).
A LDPC code is called regular, if the number of 1’s in each

row as well as the number of 1’s in each column is exactly
equal. Let ρ denote the number of 1’s in each row called right
degree and λ the number of 1’s in each column called left
degree. Please note that the set A of all valid code words
is uniquely defined by H, whereas several generator matrices
exist fulfilling (5).

Let Hl = {κl,1, · · · , κl,ρ} be the set of column indices
according to the nonzero elements in the l-th row of H. Then,
analogue to (6) for l = 1, · · · , L the parity check equation

c(κl,1) ⊕ · · · ⊕ c(κl,ρ) = 0 (7)

is satisfied, where ⊕ is the XOR-operator. After mapping the
bits into the signal space by BPSK (bit assignment as in section
II), the XOR-operator can be replaced by the multiplication,
i.e. the signal space representation of (7) is given by

∏

k∈Hl

s(k) = 1. (8)

Please note that for any nonmember of A the expectation of
the product becomes

E
{ ∏

k∈H̄

s(k)
}

= 0, (9)

where H̄ is an arbitrary set of indices according to the null
space of the code. Since we aim to obtain phase correct

channel estimates, the signal space representation of any valid
codeword should be unique independently from a complex
factor. To this end the channel code should be asymmetric as
stated in the following definition:

Definition 1: A channel code is called asymmetric, if
the negation of an arbitrary valid code word is not a valid
code word:

c ∈ A ⇔ c 6∈ A

Obviously, a code is asymmetric if an arbitrary parity
check sum includes an odd number of encoded bits, e.g.

c(1) ⊕ c(2) ⊕ c(3) = 0 ⇔ c(1) ⊕ c(2) ⊕ c(3) 6= 0, (10)

where the overbar denotes the negation of the bit. Thus, we
can state following theorem:

Theorem 1: Let H be the parity check matrix of a linear
channel code. If there exists a row or a linear combination of
rows in H such that the number of 1’s is odd, then this code
is asymmetric.

We call a code to be strong asymmetric, if each row of H

includes an odd number of nonzero elements. Consequently,
we restrict in the following to regular LDPC codes with odd
ρ.

In the next section we make use of the following set
definition: Let l(l̃, k) be the row of l̃-th nonzero element in
the k-th column in H. After excluding k from Hl̃, the number
of the remaining elements is even. Thus, the remaining part
can be separated into 2 equal sized subsets H

(1|2)

l̃,k
and H

(2|2)

l̃,k
.

IV. ALGORITHM

This section is separated into two subsections. The focus of
first subsection is on the derivation of the proposed algorithm
for blind equalization and channel estimation with respect to
a single layer, whereas the second subsection deals with issue
of multilayer detection.

A. Blind Equalization and Channel Estimation

Since in this section we focus on estimating the equalizer
and the channel only with respect to the m-th layer, for the
sake of clarity the layer index m is dropped in some notations.

Let e ∈
� NR×1 be an arbitrary linear filter unequal zero,

y(k) = eHr(k) (11)

be the filter output at the receiver and q = WHe be the
overall impulse response of filter and channel. Furthermore,
assume that H is the parity check matrix corresponding to the
generator matrix G̃m of the m-th layer. Selecting an arbitrary
1 in the parity check matrix H, e.g. the l̃-th 1 in the k-th
column, it can be shown that the m-th column wm of the



channel impulse response W weighted by some real positive
factor is given by the expectation

E
{

r(k)
∏

µ∈H
(1|2)

l̃,k

y(µ)
∏

ν∈H
(2|2)

l̃,k

y∗(ν)
}

(12)

= E
{(

wmsm(k) +
∑

m̃∈{1,··· ,NT}/m

wm̃sm̃(k) + n(k)
)

∏

µ∈H
(1|2)

l̃,k

(
q∗msm(µ) +

∑

m̃∈{1,··· ,NT}/m

q∗m̃sm̃(µ) + η(µ)
)

∏

ν∈H
(2|2)

l̃,k

(
qms∗m(ν) +

∑

m̃∈{1,··· ,NT}/m

qm̃s∗m̃ + η∗(ν)
)}

,

where η(k) = eHn(k) and qm is the m-th entry of q.

Proof: Interchanging the order of products and sums
(12) can be rearranged to (13) in the bottom line of the
next page, where M is the set of ρ-tuples with cardinality
Nρ

T consisting of all layer combinations of length ρ and
Hl̃(l,k) = {κl̃,1, · · · , κl̃,ρ}. Since the noise is i.i.d, all elements
incorporating noise vanish in (13). Assuming that no parity
check sum is accidentally caught in v(m̃1, · · · , m̃ρ), due to
(9) this term becomes zero and only the left term remains so
that

E
{

r(k)
∏

µ∈H
(1|2)

l̃,k

y(µ)
∏

ν∈H
(2|2)

l̃,k

y∗(ν)
}

= wm|qm|ρ−1. (14)

Obviously, (14) is equivalent to the true channel coefficients
wm corresponding to the m-th layer, which is weighted by a
real positive factor |qm|ρ−1. This factor is real and positive,
since the phase rotation caused by the product according to
the subset H(1|2)

l̃,k
is compensated by the conjugated counterpart

according to H
(2|2)

l̃,k
. Recall that (14) holds for Ω different sets

H
(1|2)

l̃,k
and H

(2|2)

l̃,k
according to the number of 1’s in H.

In real applications the expectation in (12) has to be
approximated. This can be done by averaging over Ω different
equations of this type, i.e.

ŵm =
1

Ω

λ∑

l̃=1

K∑

k=1

r(k)
∏

µ∈H
(1|2)

l̃,k

y(µ)
∏

ν∈H
(2|2)

l̃,k

y∗(ν) (15)

= wm|qm|ρ−1

+
∑

(m̃1···m̃ρ)

∈M\(m···m)

u(m̃1, · · · , m̃ρ)v̂(m̃1, · · · , m̃ρ) + η̃(k),

where η̃(k) summarizes all parts in ŵm incorporating noise
and

v̂(m̃1, · · · , m̃ρ) =
1

Ω

λ∑

l̃=1

K∑

k=1

ρ
∏

γ=1

sm̃γ
(κl̃,γ). (16)

Unfortunately, in contrast to v(m̃1, · · · , m̃ρ) this term may
not become exactly zero. The remaining error is weighted by
u(m̃1, · · · , m̃ρ), where the power of this factor depends on the
current filter adjustment. If e is an ideal linear equalizer with

respect to the m-th layer so that q = We consists of exactly
a single one at position m, the term u(m̃1, · · · , m̃ρ) becomes
zero for (m̃1 · · · m̃ρ) ∈ M\ (m · · ·m). Hence, a readjustment
of the filter e on the basis of the current channel estimate may
assist reducing the impact of this error. Therefore, we suggest
an iterative two-step algorithm, where channel estimation and
filter adaptation are repeated alternately until the algorithm
converges. Let i be an iteration counter, e(0) = [1, · · · , 1]T

be the initial equalizer at iteration i = 0, and w
(i)
m an channel

estimate of the i-th step according to (15). On the basis of the
channel estimate the filter’s coefficients can be adjusted, e.g.
by the MMSE approach with

ẽ(i+1) = Φ
−1
rr ŵ(i)

m , (17)

where Φrr = 1/K
∑K

k=1 r(k)rH (k) is an estimate of the
covariance matrix of the receive signal. In order to avoid a
bit overflow, ẽ(i) should be normalized by

e(i) =
ẽ(i)

√

ẽH
(i)Φrrẽ(i)

. (18)

The algorithm is summarized in Tab. I.

TABLE I

PHASE CORRECT BLIND DECONVOLUTION EXPLOITING CHANNEL CODING

(BDCC)

1 : Initialize e(0) = [1, · · · , 1]T and the iteration counter
i = 0.

2 : repeat
3 : Estimate the channel by (15).
4 : Update the linear equalizer by (17) and (18).
5 : Set i = i + 1.
6 : end

B. Successive Interference Cancellation

In order to deal with the complete number of layers we
propose a successive interference cancellation scheme as illus-
trated in Fig. 2. At the first stage the layer index is initialized
to m = 1. As described in the previous section the blind
estimator delivers equalizer coefficients as well as an channel
estimate with respect to the m-th layer. After equalizing,
demapping, deinterleaving and decoding r(k), an estimate of
the information bearing sequence b̂m(i) is obtained at the
receiver end. In order to mitigate the influence of the m-th
layer, the signal ŝm(k) has to be reconstructed by encoding,
interleaving and mapping b̂m(i) again into the signal space.
The product ŝm(k)ŵm is subtracted from r(k) and the layer
index m is incremented. These procedure will be repeated until
all layers are processed.

V. NUMERICAL RESULTS

In our simulations the sources were encoded by a random
generated regular (ρ, λ)-LDPC code without 4-circles. The
encoded signal were transmitted over an (4× 4) block fading
channel with i.i.d. zero mean complex gaussian distributed
channel gains. Fig. 3 and Fig. 4 shows the NMSE performance
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Fig. 2. Successive interference cancellation

versus the Eb/N0 ratio of the blind deconvolution exploiting
channel coding (BDCC), where the normalized mean squared
error (NMSE) between the true and the estimated channel is
defined by

NMSE =
‖wm − ŵm‖2

‖wm‖2
. (19)

In Fig. 3 the impact of the block length K on the NMSE-
performance is examined for (2, 3)-LDPC codes. The NMSE-
performance benefits from large blocklength. All curves in 3
shows an error floor at high Eb/N0. The larger the blocklength
the more is the starting point of the error floor shifted
to high Eb/N0-value. However, the NMSE values are even
considerable for block length K = 100.

In Fig. 4 it can be observed, that the performance of the
BDCC depends strongly on the right degree ρ of the particular
channel coding. The reason may be on the one hand that the
number of terms, which are accumulated in (13), becomes
very high for large ρ and consequently the performance is
very sensitive. On the other hand also the impact of noise on
the estimation must be taken into account. For small ρ the
BDCC performs very well.

In Fig. 5 the BER for each layer versus Eb/N0 is plotted,
where a (2, 3)-LDPC code with a blocklength 100 were used.
In order to remove fading effects, in this simulation power of
each column in the channel matrix W were normalized. It can
be observed that the latter layers benefit from the successive
interference cancellation, whereas the former layer suffer from

multilayer interference. Analogue to the observation in Fig. 3
also here an error floor at high Eb/N0-value can be observed.
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Fig. 3. NMSE vs. Eb/N0 for (2, 3)-LDPC code with block length K =
100, K = 400, K = 1600
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VI. CONCLUSIONS

In this paper we have derived an iterative algorithm, which
blindly identifies a MIMO channel exploiting the statistical
dependencies of the transmitted signal caused by channel
coding. The algorithm jointly updates channel estimates and
adapts a linear equalizer. In order to perform multilayer de-
tection a successive interference scheme was proposed. It was
shown that the detected layer can be uniquely assigned to the
source by proper channel code design. For asymmetric channel

wm|qm|ρ−1 E
{ ∏

k∈Hl

sm(k)
}

︸ ︷︷ ︸

=1

+
∑

(m̃1···m̃ρ)

∈M\(m···m)

wm̃1

ρ/2
∏

α=2

qm̃α

ρ
∏

β=ρ/2+1

q∗m̃β

︸ ︷︷ ︸

u(m̃1,··· ,m̃ρ)

E
{ ρ

∏

γ=1

sm̃γ
(κl̃,γ)

}

︸ ︷︷ ︸

v(m̃1,··· ,m̃ρ)

(13)
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Fig. 5. BER vs. Eb/N0 for (2, 3)-LDPC code with block length K = 100

coding, the algorithm also delivers phase correct estimates. By
simulations the performance of the proposed algorithm was
examined. The NMSE-performance strongly depends on code
properties, i.e. the right degree of its parity check matrix. In
the case of a short right degree the algorithm performs quite
good.
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