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ABSTRACT 2. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a MIMO-OFDM system with subcarriers andk active
A new method for calculating the sum rate capacity of Gaussia users, where the base station is equipped Withntennas and user
MIMO-OFDM broadcast channels is proposed. It is based on the k& hasN, antennas. The corresponding channel ori-tiesubcar-
hybrid scheme from [1], which was shown to have better conver rier is defined by thé/ x N, equivalent baseband channel matrix

gence properties than all other algorithms known from tres-li H.[l], which is assumed to be perfectly known at both ends of
ature. Our modification results in a further significant shap the transmission link. Because of the duality mentionedtesfve
without the need for a heuristic parameter. will directly concentrate on thaplink. With the N, x 1 transmit

vectorsxy[!] and theM x 1 Gaussian noise vectail], the receive
signal per subcarrier can be written as

K
1. INTRODUCTION y[i] = ZHk[l] xp[l] +nfl], 1<I1<L. (1)

k=1
MIMO-OFDM is a promising candidate for future wireless com-
munication systems as it allows for very high data rates. The
achievable sum rate is a reasonable optimization critex®olong
as fairness among users is not an issue. For the uplink, all mo
bile stations usually have individual power constrainthie Bum
capacity is achievable by successive decoding and the optim 1 & K
transmit covariance matrices can be determined by iteratater- Csum = max — Z log, [T+ Z H [l Qx| Hf [1] 2
filling [2]. In the downlink, dirty paper coding is requiredstead. Qi L 7= k=1
A direct optimization of the covariance matrices is difficas the
objective function is not concave. In [3], a duality betwdeoad-
cast and multiple-access channels with sum power constrais
established, which allows to solve the simpler uplink peabland

Without loss of generality we assume uncorrelated noiske wiit
variance. Ignoring the spectral loss due to the guard iatetire
maximum sum rate of this multiple-access channel (in bichen-
nel use) is given by

and equals the desired downlink sum capacity if the maximiza
tion is performed over all positive semi-definite transnutvari-
ance matriceQy[l] = E {xx[l] x;/ [I]} that fulfill the total power

transform the solution for the downlink. However, the vhaka constraint MRS
power allocation among users makes the task become more in- > {Qey < P (3)
volved as the straightforward modification of iterative eréitling L =1 k=1

for this case is not guaranteed to converge. A very simple-alg  The objective function in (2) is concave, so standard corex
rithm that alternatingly optimizes the transmit covarengatrices timization algorithms [5] could be applied. More sophiatid

and the power distribution was introduced in [4]. Recerljly- approaches exploiting the special structure of the protaehand
brid scheme has been proposed [1], which seems to outperformgre described in the next section.

all other existing sum rate optimization algorithms. Itsisefast, Using successive decoding in the uplink and dirty paper cod-
but not necessarily convergent method in order to genergé®d  ing in the downlink, the resulting noise covariance masi¢e-

starting point for an optimal, but slow one. Here, we suggest  cluding interference) for userare given by
include a low complexity approximate line search in eachaite

tion. It will be demonstrated that our new approach resultari K " =
improved rate of convergence. My =1+ Y H;QH{, By=I+) HiSH;, (4)
i=k+1 i=1

The remainder of this paper is organized as follows. The sys-
tem model and the optimization problem is defined in Section 2 respectively, where the subcarrier indewas omitted for nota-
The mentioned sum rate maximization algorithms are rewdewe  tional brevity. Then, introducing the economy size singwiue
Section 3, before our extension is described in Section &i@e5 decomposition of
contains simulation results, and concluding remarks céafiotned ) .
in Section 6. M,2H;B, 2 =U, =, V{/ (5)



with the squarediagonal matrix®;, containing only the nonzero
singular values, the solution to (2) can be transformed deoto
obtain the optimum\/ x M downlink covariance matrices [3]

_1 Ty 1 g1
Sk=M,2U, VI B2Q,BZV, UM, 2 (6

that also fulfill the sum power constraint (3).

3. SUM RATE MAXIMIZATION ALGORITHMS

In this section we review some existing algorithms for thensu
rate maximization in multiuser MIMO systems. As the reqdire
operations are identical for all subcarriers, we restddi t= 1 for
simplicity and omit the index in order to make the presentation
more readable.

3.1. Individual Power Constraints

Let us first consider the case where the users have indivixtwegr
constraints

tr {Qk} < P, (7)

This is typical for an uplink scenario. Assume that ukdreats
all other users as colored noise, hence the correspondingawise
variance matrix is given by

1<k<K.

Zk=I+ZHiQinI (8)
i#k
Then the objective function in (2) can be rewritten as
©)

—log, |T + Q: HY Z;lHk‘ +log, |Zs] |

where the determinant propertig+ AB| = |I + BA| and

|AB| = |A||B| have been used. Defining the eigenvalue decom-

position of theeffectivechannel covariance matrix
HY Z,'Hy, = W, A, WY (10)

it is easy to verify that the maximization of (9) ov€); while
all other transmit covariance matrices are fixed leads tavise

known waterfilling solution [6]
Qr =W P, W[ (11)
with Py =max (ukI — A,;l , 0) , (12)

where max denotes an element-wise maximum here, and the wa-

terfilling level uy is chosen such that the power constraint (7) is
fulfilled. Modifying Q. affects the noise seen by the other users.
Hence, the transmit covariance matrices must be updategsuc
sively fork = 1,..., K using (8), (10) and (11) in an iterative
fashion [2]. As single-user waterfilling can never decretse
sum rate, this procedure is guaranteed to converge to thualglo
optimum. The pseudo-code is shown in Fig. 1.

Initialization

— B
Q= N"'I K H
R:I+Zk:1HkaHk

repeat
fork=1,...,K
Eigenvalue decomposition of effective channel
Z. = R—H, Q. Hf
H Z,'Hy = W, A, WY

Single-user waterfilling
P, = max (uI— A5, 0) st tr{Pi} = P
Update transmit and receive covariance matrix
Qr = Wi P WY/
R =7Z;+H, Q. Hf
end
until convergence

Fig. 1. Iterative waterfilling with individual power constraints

3.2. Alternating Power and Covariance Optimization

In [4], the algorithm in Fig. 2 was proposed for the sum ratesma
imization with total power constraint. Given an initial pendis-
tribution P, with 3°,*_, P = P, the covariance matricey, or,
equivalently, their normalized versiol®, = Qg/P; are opti-
mized using the iterative waterfilling from the previous t&at
Usually, a single iteration suffices in this step. Then, kegp
Q. fixed, the power distribution is optimized. For this purpose
standard interior point methods can be used because thetiobje
function in (2) is concave with respect fo,. These two steps are
alternatingly repeated until convergence. Although tipisraach
always converges to the global optimum unless a user islsgdtc
off prematurely, it does not fully exploit the structure b&topti-
mization problem. This is especially critical for large nen of
users.

Initialization
P, =P/K

repeat
Optimize normalized covariance matric@s
for fixed power distributionP;,
using iterative waterfilling with individual constraints

Optimize power distributiorP;,

for fixed normalized covariance matric€k;
using standard interior point methods
until convergence

Fig. 2. Alternating power and covariance optimization



3.3. Sum Power Iterative Waterfilling

Looking at the Karush-Kuhn-Tucker optimality conditiori,[the
only difference between individual and total power coristgis
that in the latter case the waterfilling level must be the simall
users, i.e.ur, = p. Thus, instead of updating the covariance ma-
trices Q. one after another, the waterfilling procedure should be
performed for all users simultaneously as demonstratedgin3~
However, in Section 3.1 the effective channel of the cutyeoyti-
mized user does not change by the power reallocation. Thistis
true anymore if all transmit covariance matrices are matlifie
the same time. As a consequence, the sum rate does not mecess:
ily increase after simultaneous waterfilling. In fact, cergence
could only be proven foK = 2 users in [1].

Initialization
Qi = —K,I?Vk I
R=I1+Y7 H.Q.H

repeat
Eigenvalue decomposition of all effective channels
Z, =R - H, Q. Hf
Hf Z,'Hy, = W, A, WY

Simultaneous waterfilling for all users
P, =max (uI — A;',0) st S tr{Py}=P

Update transmit and receive covariance matrices
Qr =W, P, W/
R=I1+YF H.Q.H

until convergence

Fig. 3. Iterative waterfilling with total power constraint

3.4. Cyclic Coordinate Ascent

Waterfilling with individual power constraints is a speatalse of
the globally convergent cyclic coordinate ascent algariftt]. In

order to apply it with total power constraint let us consitles
optimization problem

K K

1 ([k=r]x+1) gpH

Iézlg))(? E log, [T+ E H: Q, H;,
k k=1 k=1

. (a3
s.t.Ztr{Q,@}:P, 1<j<K.
k=1

From the concavity of the objective function it follows thiae op-
timum covariance matrices must fulfi®\’) = Qx, 1 < j < K,
so (13) is obviously equivalent to the original sum rate nréxa-
tion (2). Observe that each indgxappears only once per sum-
mand. Hence, aIQ,? ) can be iteratively updated for fixgdus-
ing sum power waterfilling without changing the current effiee
channels. A major drawback is the required memorykaso-
variance matrices need to be stored per user. This can baealvoi
if additionally after each waterfilling step the covariamatrices
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Fig. 4. Example for the relation between sum rate and

are averaged. Then in the sum power iterative waterfilling-al
rithm shown in Fig. 3, only the transmit covariance updatenida
needs to be replaced by

K-1

Q.

1
Qk:}-WkPka 7

(14)

For large number of users convergence is very slow due to the
small factor in front of the first, updated term. Therefordhya

brid scheme was also suggested in [1], where the fast digorit
based on (11) is only used for a finite number of iterationsteef
switching to the convergent version (14).

4. EXTENSION BY EFFICIENT LINE SEARCH

The hybrid algorithm appears to be somewhat heuristic. Note
however, that (11) and (14) can be generalized to

Q=7 ViP, Vi + (1-7) Qu

with 1/K <~ < 1. Instead of abruptly changingfrom its max-
imum to the minimum value, we suggest to perform a simple line
search in order to maximize the sum rate in each iterationthifo
end, standard bisection methods could be employed. Howtéeer
example shown in Fig. 4 for the system parameters given in Sec
tion 5 demonstrates that the functional relation betweenstim
rate and the parametercan be well approximated by a parabola,
ie.

(15)

Coum(7) = ay +by+c. (16)
Solving fora andb and setting the first derivative to zero we obtain
1

3 Csum(()) — 4Csum(§) + Csum(l) 1) (17)
)7 )

4Csum(0) - 8Csum(%) + 4 cvsum(1
which is indicated by the stars in Fig. 4. It matches quitd wih
the true optimum. Note thafsum (0) equalsCsum (Yopt) from the
previous iteration and does not need to be recalculatedthétur
more,Csum (1) is the sum rate achieved by the original sum power
iterative waterfilling; it actually decreases in the fouitidration
while Csum(1/K) is considerably smaller thablum (Yopt)-

Yopt A Min (



Initialization
_ P
Qr = 75,1

R=I1+Y5 H.Q.H

repeat
Eigenvalue decomposition of all effective channels
Z, =R - H, Q. H/
Hf Z,'Hy = W, A, WY

Simultaneous waterfilling for all users
P, =max (uI — A;',0) st Zle tr{Px} =P

Line search for optimum weighting factor
Qi = W, P Wi/

RV — 1 + 25:1 H, Qzew HkH
Coum(7) =logy |[v-R™™ + (1 —9) - RJ
Determineyopt from (17)

Update transmit and receive covariance matrices
Qi = Yopt - Qi + (1 — Yopt) - Qu
R = yopt - R™" + (1 — vopt) - R

until convergence

Fig. 5. Iterative waterfilling with efficient line search

5. SIMULATION RESULTS

In order to demonstrate the convergence behavior of therdiff
ent sum rate maximization algorithms, a set of channel oeri
H,[I] was randomly generated from a complex Gaussian distrib-
ution. The number of subcarriers was fixedio= 8, and the
base station wittl/ = 4 antennas has a total power constraint of
P = 20dB. There wergl’ = 15 users havingV, = 2" antennas
for5n+ 1 < k < 5(n+ 1), respectively. The results are depicted
in Fig. 6.

As individual power constraint®, = P/K are more restric-
tive, the sum rate is smaller in this case. For the altergatin
gorithm, only one Newton step is performed during power-opti
mization in order to keep the complexity per iteration maréess
comparable for all methods. This explains the extremehy sion-
vergence. The sum power iterative waterfilling from SecBo®
shows good performance at the beginning, but then fails te co
verge. On the other hand, the modified updating rule (14yeedri
from the cyclic coordinate ascent algorithm with an addisilcav-
eraging step allows only for very small changes of the trahsm
covariance matrices in each iteration due to the large numbe
usersK. For the hybrid scheme we switched to the convergent up-
date formula after 5 iterations as suggested in [1]. At thigipthe
original version has already started diverging. Off coutisis can
be avoided by adaptive switching. However, unless the sten ra
actually decreases, it may be difficult to decide when to @wit
This problem does not arise if a simple line search is indude
It always outperforms the hybrid scheme as it (at least agppro
mately) maximizes the sum rate in each iteration requirinly a
negligible computational overhead. Our new algorithm erges
in less than 10 iterations to the global optimum.

Osum

30- - - -individual power constraints
—— alternating optimization
—+—sum power waterfilling
20+ —»— coordinate ascent (average
hybrid algorithm
—— proposed line search
20 Il Il Il Il
0 10 20 30 40 50
iteration
Fig. 6. Convergence behavior of sum rate maximization algo-
rithms

6. CONCLUSION

In this paper, several algorithms for the maximization & sum
rate in the downlink of MIMO-OFDM systems were reviewed.

They all make use of a duality in order to solve an easier kplin

problem with total power constraint. The alternating apgto
of [4] does not fully exploit the structure of the objectivent-

tion. A hybrid scheme proposed in [1] performs much bettee W

demonstrated that including a simple line search in eachtita
can further increase the speed of convergence significantly
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