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ABSTRACT

A new method for calculating the sum rate capacity of Gaussian
MIMO-OFDM broadcast channels is proposed. It is based on the
hybrid scheme from [1], which was shown to have better conver-
gence properties than all other algorithms known from the liter-
ature. Our modification results in a further significant speed-up
without the need for a heuristic parameter.

1. INTRODUCTION

MIMO-OFDM is a promising candidate for future wireless com-
munication systems as it allows for very high data rates. The
achievable sum rate is a reasonable optimization criterionas long
as fairness among users is not an issue. For the uplink, all mo-
bile stations usually have individual power constraints. The sum
capacity is achievable by successive decoding and the optimum
transmit covariance matrices can be determined by iterative water-
filling [2]. In the downlink, dirty paper coding is required instead.
A direct optimization of the covariance matrices is difficult as the
objective function is not concave. In [3], a duality betweenbroad-
cast and multiple-access channels with sum power constraint was
established, which allows to solve the simpler uplink problem and
transform the solution for the downlink. However, the variable
power allocation among users makes the task become more in-
volved as the straightforward modification of iterative waterfilling
for this case is not guaranteed to converge. A very simple algo-
rithm that alternatingly optimizes the transmit covariance matrices
and the power distribution was introduced in [4]. Recently,a hy-
brid scheme has been proposed [1], which seems to outperform
all other existing sum rate optimization algorithms. It uses a fast,
but not necessarily convergent method in order to generate agood
starting point for an optimal, but slow one. Here, we suggestto
include a low complexity approximate line search in each itera-
tion. It will be demonstrated that our new approach results in an
improved rate of convergence.

The remainder of this paper is organized as follows. The sys-
tem model and the optimization problem is defined in Section 2.
The mentioned sum rate maximization algorithms are reviewed in
Section 3, before our extension is described in Section 4. Section 5
contains simulation results, and concluding remarks can befound
in Section 6.

2. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a MIMO-OFDM system withL subcarriers andK active
users, where the base station is equipped withM antennas and user
k hasNk antennas. The corresponding channel on thel-th subcar-
rier is defined by theM ×Nk equivalent baseband channel matrix
Hk[l], which is assumed to be perfectly known at both ends of
the transmission link. Because of the duality mentioned before we
will directly concentrate on theuplink. With theNk × 1 transmit
vectorsxk[l] and theM×1 Gaussian noise vectorn[l], the receive
signal per subcarrier can be written as

y[l] =

KX
k=1

Hk[l]xk[l] + n[l] , 1 ≤ l ≤ L . (1)

Without loss of generality we assume uncorrelated noise with unit
variance. Ignoring the spectral loss due to the guard interval, the
maximum sum rate of this multiple-access channel (in bit perchan-
nel use) is given by

Csum = max
Qk [l]

1

L

LX
l=1

log2

�����I +
KX

k=1

Hk[l]Qk[l]HH
k [l]

����� (2)

and equals the desired downlink sum capacity if the maximiza-
tion is performed over all positive semi-definite transmit covari-
ance matricesQk[l] = E

�
xk[l]xH

k [l]
	

that fulfill the total power
constraint

1

L

LX
l=1

KX
k=1

tr {Qk[l]} ≤ P . (3)

The objective function in (2) is concave, so standard convexop-
timization algorithms [5] could be applied. More sophisticated
approaches exploiting the special structure of the problemat hand
are described in the next section.

Using successive decoding in the uplink and dirty paper cod-
ing in the downlink, the resulting noise covariance matrices (in-
cluding interference) for userk are given by

Mk = I+
KX

i=k+1

Hi Qi H
H
i , Bk = I+

k−1X
i=1

H
H
k SiHk , (4)

respectively, where the subcarrier indexl was omitted for nota-
tional brevity. Then, introducing the economy size singular value
decomposition of

M
− 1

2
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k = Uk Σk V
H
k (5)



with thesquarediagonal matrixΣk containing only the nonzero
singular values, the solution to (2) can be transformed in order to
obtain the optimumM × M downlink covariance matrices [3]
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that also fulfill the sum power constraint (3).

3. SUM RATE MAXIMIZATION ALGORITHMS

In this section we review some existing algorithms for the sum
rate maximization in multiuser MIMO systems. As the required
operations are identical for all subcarriers, we restrict to L = 1 for
simplicity and omit the indexl in order to make the presentation
more readable.

3.1. Individual Power Constraints

Let us first consider the case where the users have individualpower
constraints

tr {Qk} ≤ Pk , 1 ≤ k ≤ K . (7)

This is typical for an uplink scenario. Assume that userk treats
all other users as colored noise, hence the corresponding noiseco-
variance matrix is given by

Zk = I +
X
i6=k

Hi Qi H
H
i (8)

Then the objective function in (2) can be rewritten as

log2

���Zk + Hk Qk H
H
k

���
= log2

���I + Qk H
H
k Z

−1
k Hk

���+ log2 |Zk| ,
(9)

where the determinant properties|I + AB| = |I + BA| and
|AB| = |A||B| have been used. Defining the eigenvalue decom-
position of theeffectivechannel covariance matrix

H
H
k Z

−1
k Hk = Wk Λk W

H
k (10)

it is easy to verify that the maximization of (9) overQk while
all other transmit covariance matrices are fixed leads to thewell-
known waterfilling solution [6]

Qk =Wk Pk W
H
k (11)

with Pk =max
�
µkI− Λ

−1
k , 0

�
, (12)

where max denotes an element-wise maximum here, and the wa-
terfilling level µk is chosen such that the power constraint (7) is
fulfilled. Modifying Qk affects the noise seen by the other users.
Hence, the transmit covariance matrices must be updated succes-
sively for k = 1, . . . , K using (8), (10) and (11) in an iterative
fashion [2]. As single-user waterfilling can never decreasethe
sum rate, this procedure is guaranteed to converge to the global
optimum. The pseudo-code is shown in Fig. 1.

Initialization
Qk = Pk

Nk
I

R = I +
PK

k=1 Hk Qk HH
k

repeat
for k = 1, . . . , K

Eigenvalue decomposition of effective channel
Zk = R − Hk Qk HH

k

HH
k Z−1

k Hk = Wk Λk WH
k

Single-user waterfilling
Pk = max

�
µkI− Λ−1

k , 0
�

s.t. tr {Pk} = Pk

Update transmit and receive covariance matrix
Qk = Wk Pk WH

k

R = Zk + Hk Qk HH
k

end
until convergence

Fig. 1. Iterative waterfilling with individual power constraints

3.2. Alternating Power and Covariance Optimization

In [4], the algorithm in Fig. 2 was proposed for the sum rate max-
imization with total power constraint. Given an initial power dis-
tribution Pk with

PK

k=1 Pk = P , the covariance matricesQk or,
equivalently, their normalized versions̄Qk = Qk/Pk are opti-
mized using the iterative waterfilling from the previous section.
Usually, a single iteration suffices in this step. Then, keeping
Q̄k fixed, the power distribution is optimized. For this purpose,
standard interior point methods can be used because the objective
function in (2) is concave with respect toPk. These two steps are
alternatingly repeated until convergence. Although this approach
always converges to the global optimum unless a user is switched
off prematurely, it does not fully exploit the structure of the opti-
mization problem. This is especially critical for large number of
users.

Initialization
Pk = P/K

repeat
Optimize normalized covariance matricesQ̄k

for fixed power distributionPk

using iterative waterfilling with individual constraints

Optimize power distributionPk

for fixed normalized covariance matricesQ̄k

using standard interior point methods
until convergence

Fig. 2. Alternating power and covariance optimization



3.3. Sum Power Iterative Waterfilling

Looking at the Karush-Kuhn-Tucker optimality conditions [5], the
only difference between individual and total power constraints is
that in the latter case the waterfilling level must be the samefor all
users, i.e.µk = µ. Thus, instead of updating the covariance ma-
tricesQk one after another, the waterfilling procedure should be
performed for all users simultaneously as demonstrated in Fig. 3.
However, in Section 3.1 the effective channel of the currently opti-
mized user does not change by the power reallocation. This isnot
true anymore if all transmit covariance matrices are modified at
the same time. As a consequence, the sum rate does not necessar-
ily increase after simultaneous waterfilling. In fact, convergence
could only be proven forK = 2 users in [1].

Initialization
Qk = P

K·Nk
I

R = I +
PK

k=1 Hk Qk HH
k

repeat
Eigenvalue decomposition of all effective channels
Zk = R − Hk Qk HH

k

HH
k Z−1

k Hk = Wk Λk WH
k

Simultaneous waterfilling for all users
Pk = max

�
µI −Λ−1

k ,0
�

s.t.
PK

k=1 tr {Pk} = P

Update transmit and receive covariance matrices
Qk = Wk Pk WH

k

R = I +
PK

k=1 Hk Qk HH
k

until convergence

Fig. 3. Iterative waterfilling with total power constraint

3.4. Cyclic Coordinate Ascent

Waterfilling with individual power constraints is a specialcase of
the globally convergent cyclic coordinate ascent algorithm [1]. In
order to apply it with total power constraint let us considerthe
optimization problem

max
Q

(j)
k

1

K

KX
κ=1

log2

�����I +

KX
k=1

Hk Q
([k−κ]K+1)
k H

H
k

�����
s.t.

KX
k=1

tr
n
Q

(j)
k

o
= P , 1 ≤ j ≤ K .

(13)

From the concavity of the objective function it follows thatthe op-
timum covariance matrices must fulfillQ(j)

k = Qk, 1 ≤ j ≤ K,
so (13) is obviously equivalent to the original sum rate maximiza-
tion (2). Observe that each indexj appears only once per sum-
mand. Hence, allQ(j)

k can be iteratively updated for fixedj us-
ing sum power waterfilling without changing the current effective
channels. A major drawback is the required memory, asK co-
variance matrices need to be stored per user. This can be avoided
if additionally after each waterfilling step the covariancematrices
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Fig. 4. Example for the relation between sum rate andγ

are averaged. Then in the sum power iterative waterfilling algo-
rithm shown in Fig. 3, only the transmit covariance update formula
needs to be replaced by

Qk =
1

K
· Wk Pk W

H
k +

K − 1

K
· Qk . (14)

For large number of users convergence is very slow due to the
small factor in front of the first, updated term. Therefore, ahy-
brid scheme was also suggested in [1], where the fast algorithm
based on (11) is only used for a finite number of iterations before
switching to the convergent version (14).

4. EXTENSION BY EFFICIENT LINE SEARCH

The hybrid algorithm appears to be somewhat heuristic. Note,
however, that (11) and (14) can be generalized to

Qk = γ · Vk Pk V
H
k + (1 − γ) · Qk (15)

with 1/K ≤ γ ≤ 1. Instead of abruptly changingγ from its max-
imum to the minimum value, we suggest to perform a simple line
search in order to maximize the sum rate in each iteration. Tothis
end, standard bisection methods could be employed. However, the
example shown in Fig. 4 for the system parameters given in Sec-
tion 5 demonstrates that the functional relation between the sum
rate and the parameterγ can be well approximated by a parabola,
i.e.

Csum(γ) ≈ aγ2 + bγ + c . (16)

Solving fora andb and setting the first derivative to zero we obtain

γopt ≈ min

�
3 Csum(0) − 4Csum( 1

2
) + Csum(1)

4Csum(0) − 8Csum( 1
2
) + 4 Csum(1)

, 1

�
, (17)

which is indicated by the stars in Fig. 4. It matches quite well with
the true optimum. Note thatCsum(0) equalsCsum(γopt) from the
previous iteration and does not need to be recalculated. Further-
more,Csum(1) is the sum rate achieved by the original sum power
iterative waterfilling; it actually decreases in the fourthiteration
while Csum(1/K) is considerably smaller thanCsum(γopt).



Initialization
Qk = P

K·Nk
I

R = I +
PK

k=1 Hk Qk HH
k

repeat
Eigenvalue decomposition of all effective channels
Zk = R − Hk Qk HH

k

HH
k Z−1

k Hk = Wk Λk WH
k

Simultaneous waterfilling for all users
Pk = max

�
µI −Λ−1

k ,0
�

s.t.
PK

k=1 tr {Pk} = P

Line search for optimum weighting factor
Qnew

k = Wk Pk WH
k

Rnew = I +
PK

k=1 Hk Qnew
k HH

k

Csum(γ) = log2 |γ · Rnew + (1 − γ) · R|
Determineγopt from (17)

Update transmit and receive covariance matrices
Qk = γopt · Q

new
k + (1 − γopt) · Qk

R = γopt · R
new + (1 − γopt) · R

until convergence

Fig. 5. Iterative waterfilling with efficient line search

5. SIMULATION RESULTS

In order to demonstrate the convergence behavior of the differ-
ent sum rate maximization algorithms, a set of channel matrices
Hk[l] was randomly generated from a complex Gaussian distrib-
ution. The number of subcarriers was fixed toL = 8, and the
base station withM = 4 antennas has a total power constraint of
P = 20 dB. There wereK = 15 users havingNk = 2n antennas
for 5n + 1 ≤ k ≤ 5(n + 1), respectively. The results are depicted
in Fig. 6.

As individual power constraintsPk = P/K are more restric-
tive, the sum rate is smaller in this case. For the alternating al-
gorithm, only one Newton step is performed during power opti-
mization in order to keep the complexity per iteration more or less
comparable for all methods. This explains the extremely slow con-
vergence. The sum power iterative waterfilling from Section3.3
shows good performance at the beginning, but then fails to con-
verge. On the other hand, the modified updating rule (14) derived
from the cyclic coordinate ascent algorithm with an additional av-
eraging step allows only for very small changes of the transmit
covariance matrices in each iteration due to the large number of
usersK. For the hybrid scheme we switched to the convergent up-
date formula after 5 iterations as suggested in [1]. At this point, the
original version has already started diverging. Off course, this can
be avoided by adaptive switching. However, unless the sum rate
actually decreases, it may be difficult to decide when to switch.
This problem does not arise if a simple line search is included.
It always outperforms the hybrid scheme as it (at least approxi-
mately) maximizes the sum rate in each iteration requiring only a
negligible computational overhead. Our new algorithm converges
in less than 10 iterations to the global optimum.
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Fig. 6. Convergence behavior of sum rate maximization algo-
rithms

6. CONCLUSION

In this paper, several algorithms for the maximization of the sum
rate in the downlink of MIMO-OFDM systems were reviewed.
They all make use of a duality in order to solve an easier uplink
problem with total power constraint. The alternating approach
of [4] does not fully exploit the structure of the objective func-
tion. A hybrid scheme proposed in [1] performs much better. We
demonstrated that including a simple line search in each iteration
can further increase the speed of convergence significantly.
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