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Abstract— In this paper we propose a new algorithm sep-
arating blindly the sources of a flat MIMO-communication
link, where all sources are independently channel encoded. To
this end the proposed method exploits statistical dependencies
caused by the channel code for blindly estimating the channel
and simultaneously adjusting a linear equalizer. In contrast to
most common blind source separation methods the suggested
method completely resolves the phase and permutation ambiguity
of the estimated channel impulse response and the equalizer.
The performance of the presented method will be evaluated by
numerical results.

I. INTRODUCTION

Most blind source separation (BSS) methods as e.g. [1], [2],
[3], [4] are based on the assumption of statistically indepen-
dent and non gaussian distributed sources. The channel causes
a linear superposition of these sources. As stated by the central
limit theorem, the distribution of the channel output is more
similar to the gaussian distribution than the channel input.
Thus, the key idea behind blind source separation is to design
blindly (without channel state information) a linear equalizer
such that the equalizer restores the statistical independence.
To this end the equalizer’s output has to be uncorrelated and
as less gaussian as possible.

Generally, the receiver does not need to know the exact
probability density function of the sources in order to blindly
separate them. However, in a MIMO-communication link the
degree of knowledge at the receiver is much higher, since the
source signals are usually defined on a finite alphabet such as
PSK, QAM, etc. and the transmitted data are protected against
errors by a channel code.

In this paper we will propose a method for BSS, which
exploits statistical dependencies caused by channel coding
in order to blindly identify the channel and simultaneously
adjust a linear equalizer. In contrast to most common BSS
methods the suggested method completely resolves the phase
and permutation ambiguity of the estimated channel impulse
response and the corresponding linear equalizer. In order to
achieve this target the channel code has to satisfy an asymme-
try condition. In [5], [6] asymmetric signaling constellations
were utilized for phase correct blind estimation techniques.
However, code asymmetry does not necessarily involve symbol
asymmetry. A similar approach for blind deconvolution of
frequency selective SISO channels was suggested in [7].

This paper is organized as follows: In Section II the system
model will be presented. Since channel coding plays a key
role for the proposed method, we will discus some required
properties of channel codes and give some definitions in Sec-
tion III. The presented algorithm will be derived in Section IV.
Finally we give numerical results in Section V and conclude
this paper in Section VI.

II. SYSTEM MODEL
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Fig. 1. System Model

As illustrated in Fig. 1, we consider a layered block
transmission of NT independent binary data streams bm ∈
{0, 1}(I×1) of length I , where m = 1, · · · , NT is the layer
index. After encoding each layer independently by a linear
block encoder, we obtain

cm = mod(Gbm, 2), (1)

where G ∈ {0, 1}(I×K) is the channel code generator matrix
with rate Rc = I/K < 1 and cm ∈ {0, 1}K×1. Afterwards,
at each layer the resulting bits are permuted by

dm = Pmcm, (2)

where the permutation matrix Pm ∈ {0, 1}K×K is contains
exactly one nonzero element in each row and column. En-
coding und permutation can be summarized by the overall
generator matrix G̃m = PmG. Please note, that the generator
matrix of a certain layer may coincide with any other, but
the permutation matrix of each layer should differ, in order to
make each layer distinguishable from any other.

After mapping the bits into the signal space by BPSK
modulation assigning 0 → 1 and 1 → −1, the channel input
is given by

sm = BPSK(dm). (3)



This data can be arranged in the matrix S = [s1, · · · , sNT ]T =
[s(1), · · · , s(K)]. The signal pass through a (NR×NT) MIMO
channel with NR ≥ NT. Collecting NR samples at instance k
the channel output can be expressed as

r(k) = Ws(k) + n(k) (4)

where W is the MIMO channel impulse response (CIR) and
n(k) ∈

�
NR×1 is i.i.d. white gaussian noise with covariance

E{n(k)nH(k)} = σ2
nINR .

III. CHANNEL CODING

Since they are well suited for our purpose, throughout this
paper we consider regular low density parity check (LDPC)
codes for channel coding [8], [9]. A (K, I)-LDPC code is
characterized by a sparse parity check matrix H of dimension
(L × K), where the number of nonzero elements Ω in H is
much lower than the number of zeros. The number of rows in
H is at least L ≥ K − I and H has rank K − I . The relation

mod(HG, 2) = 0 (5)

holds with respect to the corresponding generator matrix. Due
to (5) the parity check sum equation

mod(Hc, 2) = 0 (6)

also holds for any encoded data bit stream c = mod(Gb, 2).
Let s = BPSK(c) be the BPSK signal space representation
of c and Hl be the set of column indices according to the
nonzero elements in the l-th row of H. Then, analogue to (6)
for l = 1, · · · , L the relation

∏

k∈Hl

s(k) = 1 (7)

holds. Let C be a set comprising of indices k corresponding
to the null space of the code. Please note that in this case the
expectation of the product with respect to C is

E
{ ∏

k∈C

s(k)
}

= 0. (8)

A LDPC code is called regular, if the number of 1’s in each
row as well as the number of 1’s in each column is exactly
equal. Let κ denote the number of 1’s in each row called right
degree and λ the number of 1’s in each column called left
degree. Please note that the set A of all valid code words
is uniquely defined by H, whereas several generator matrices
exist fulfilling (5).

Since we aim to obtain phase correct channel estimates, the
signal space representation of any valid codeword should be
unique independently from a complex factor. To this end the
channel code should be asymmetric as stated in the following
definition:

Definition 1: A channel code is called asymmetric, if
the negation of an arbitrary valid code word is not a valid
code word:

c ∈ A ⇔ c 6∈ A

Obviously, a code is asymmetric if an arbitrary parity
check sum includes an odd number of encoded bits. Thus,
we can state following theorem:

Theorem 1: Let H be the parity check matrix of a linear
channel code. If there exists a row or a linear combination of
rows in H such that the number of 1’s is odd, then this code
is asymmetric.

Consequently, we restrict in the following to regular
LDPC codes with odd κ.

Before starting with the derivation of the proposed algo-
rithm, we prefix some reasonable set definitions.

Let l(l̃, k) be the row of l̃-th nonzero element in the k-th
column in H and define the circular weight of an element
x ∈ Hl(l̃,k) in the with respect the column index k as

Wcirc(x, k) = mod(x − k, K). (9)

Then Hl̃,k is defined as the set of the column indices
according to all 1’s in the l-th row sorted in ascending order
with respect to their circular weights. Extracting k from Hl̃,k

the remaining elements can be separated into 2 equal sized
subsets H(1|2)

l,k comprising the first part and H
(2|2)
l,k comprising

the second part.
Example: Let

H =











1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 1 1 0 0 0
0 0 1 0 0 0 1 0 0 1 0 0 1 1 0
0 0 0 1 0 0 0 1 0 0 1 0 1 0 1
0 0 0 0 1 0 0 0 1 0 0 1 0 1 1











be the (6 × 15) LDPC matrix. The second nonzero element
of the seventh column is in row l(2, 7) = 4. The fourth row
contains 1’s in the columns 3, 7, 10 ,13, and 14 with circular
weights Wcirc(3, 7) = 11, Wcirc(7, 7) = 0, Wcirc(10, 7) = 3,
Wcirc(13, 7) = 6 and Wcirc(14, 7) = 7, respectively. Thus,
we obtain following sets: H2,7 = {7, 10, 13, 14, 3}, H(1|2)

2,7 =

{10, 13} and H
(2|2)
2,7 = {14, 3}.

In Tab. I all set definitions given in this section are summa-
rized.

TABLE I

SET DEFINITIONS

A : all valid code words
Hl : all column indices according to the 1’s in the l-th row of

H

H
l̃,k

: all column indices according to the 1’s in the l(l̃, k)-th
row of H in ascending order w.r.t. their circular weights

H
(1|2)

l̃,k
: subset corresponding to the first part of H̃

l,k
\ {k}

H
(2|2)

l̃,k
: subset corresponding to the second part of H

l̃,k
\ {k}



IV. PROPOSED ALGORITHM

Let e ∈
� NR×1 be a linear filter unequal zero,

y(k) = eHr(k) (10)

be the filter output at the receiver and q = WHe be the
overall impulse response of filter and channel. Furthermore,
assume that H is the parity check matrix corresponding to the
generator matrix G̃m of the m-th layer. Selecting an arbitrary
1 in the parity check matrix H, e.g. the l̃-th 1 in the k-th
column, it can be shown that the m-th column wm of the
channel impulse response W weighted by some real positive
factor is given by the expectation

E
{

r(k)
∏

µ∈H
(1|2)

l̃,k

y(µ)
∏

ν∈H
(2|2)

l̃,k

y∗(ν)
}

= E
{(

Ws(k) + n(k)
)

∏

µ∈H
(1|2)

l̃,k

(
qHs(µ) + η(µ)

)

∏

ν∈H
(2|2)

l̃,k

(
sH(ν)q + η∗(ν)

)}

, (11)

where η(k) = eHn(k).

Proof: Let kι be the ι-th member of Hl̃,k and M be the set of
κ-tuples with cardinality Nκ

T consisting of all combinations of
layers indices. With these definitions expectation (11) can be
rewritten as (12) in the bottom line of the next page. Since the
noise is i.i.d, all elements incorporating noise vanish in (12).
Assuming that no parity check sum is accidentally caught
in v(k1, · · · , kκ, m̃1, · · · , m̃κ), due to (8) this expression
becomes zero and only the left term remains such that

E
{

r(k)
∏

µ∈H
(1|2)

l̃,k

y(µ)
∏

ν∈H
(2|2)

l̃,k

y∗(ν)
}

= wm|qm|κ−1. (13)

Obviously, (13) is equivalent to the true channel coefficients
wm corresponding to the m-th layer, which is weighted
by a real positive factor |qm|κ−1. This factor is real and
positive, since phase rotation caused by the product according
to the subset H(1|2)

l̃,k
is compensated by the conjugated product

according to the subset H
(2|2)

l̃,k
. Recall that (13) holds for

Ω different expectation arguments according to the 1’s in
H. Thus, a phase correct channel estimator for wm can be
obtained by averaging over Ω different equations of this type,
i.e.

ŵm =
1

Ω

λ∑

l̃=1

K∑

k=1

r(k)
∏

µ∈H
(1|2)

l̃,k

y(µ)
∏

ν∈H
(2|2)

l̃,k

y∗(ν). (14)

Since the estimation rule (14) approximates the expectation
v(k1, · · · , kκ, m̃1, · · · , m̃κ) in (12) by averaging, this term
does not become exactly zero and an error remains weighted
by u(κ1, · · · , κM ), whose power depends on the current filter

adjustment. A readjustment of the filter e on the basis of the
current channel estimate may assist reducing the impact of this
error. If e is an ideal linear equalizer with respect to the m-th
layer, the term u(κ1, · · · , κM ) weighting the remaining error
becomes very small. Therefore, we suggest an iterative two-
step algorithm, where channel estimation and filter adaptation
are repeated alternately until the algorithm converges. Let i be
an iteration counter, e(0) = [1, · · · , 1]T be the initial equalizer

at iteration i = 0, and w
(i)
m an channel estimate of the i-th

step according to (14). On the basis of the channel estimate
the filter’s coefficients can be adjusted, e.g. by the MMSE
approach with

ẽ(i+1) = Φ
−1
rr ŵ(i)

m , (15)

where Φrr = E{r(k)rH(k)} is the covariance matrix of the
receive signal. In order to avoid a bit overflow, ẽ(i) should be
normalized by

e(i) =
ẽ(i)

√

ẽH
(i)Φrrẽ(i)

. (16)

The algorithm is summarized in Tab. II.

TABLE II

PHASE CORRECT BLIND DECONVOLUTION EXPLOITING CHANNEL CODING

(BDCC)

1 : Initialize e(0) = [1, · · · , 1]T and the iteration counter
i = 0.

2 : repeat
3 : Estimate the channel by (14).
4 : Update the linear equalizer by (15) and (16).
5 : Set i = i + 1.
6 : end

V. NUMERICAL RESULTS

In our simulation we used regular (λ, κ)-LDPC codes free
of 4-cycles.

The signal was transmitted over an (4 × 4) block fading
channel with i.i.d. zero mean complex gaussian distributed
channel gains. As block length for one channel realization we
considered K = 100, K = 400 or K = 1600. In order to
achieve approximately the desired block length, the encoding
was repeated several times and subsequently permuted by a
random interleaver.

The estimation performance was evaluated by the normal-
ized mean squared error (NMSE) between the true and the
estimated channel:

NMSE =
‖wm − ŵm‖2

‖wm‖2
(17)

The algorithms was stopped after 5 iterations. The results are
averaged over 5000 channel realizations.

Fig. 2 and Fig. V shows the NMSE performance versus
the Eb/N0 ratio of the blind deconvolution exploiting channel
coding (BDCC). All curves in 2 shows an error floor at high
Eb/N0 depending on the block length. However, the NMSE
values are even considerable for block length K = 100. In



0 5 10 15 20
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

PSfrag replacements

N
M

S
E

[d
B

]

Eb/N0 [dB]

K=100
K=400
K=1600

Fig. 2. NMSE vs. Eb/N0 for channel code (2, 3)-LDPC with block length
K = 100, K = 400, K = 1600

Fig. V it can be observed, that the performance of the BDCC
depends strongly on the right degree κ of the particular channel
coding. The reason may be on the one hand that the number
of terms, which are accumulated in (12), becomes very high
for large κ and consequently the performance is very sensitive.
On the other hand also the impact of noise on the estimation
must be taken into account. For small κ the BDCC performs
very well.

VI. CONCLUSIONS

In this paper we have derived an iterative algorithm, which
blindly identifies a MIMO channel exploiting the statistical
dependencies of the transmitted signal caused by channel
coding. The algorithm jointly updates channel estimates and
adapts a linear equalizer. For asymmetric channel coding, the
algorithm delivers phase correct estimates. It was shown by
simulations, that the performance of the proposed algorithm
depends on code properties, i.e. the right degree of its parity
check matrix. In the case of a short right degree the algorithm
performs quite good.
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wm|qm|κ−1 E
{ ∏

k∈Hl,k

sm(k)
}

︸ ︷︷ ︸

=1

+
∑

(m̃1···m̃κ)∈M\(m···m)

wm̃1

κ/2
∏

α=2

qm̃α

κ∏

β=κ/2+1

q∗m̃β

︸ ︷︷ ︸

u(m̃1,··· ,m̃κ)

E
{ κ∏

γ=1

sm̃γ
(kγ)

}

︸ ︷︷ ︸

v(k1,··· ,kκ,m̃1,··· ,m̃κ)

(12)


