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ABSTRACT
A new way to determine the exact layer-wise SINR distribu-
tion for V-BLAST with successive interference cancellation
at the receiver is presented. In contrast to previous publi-
cations, we do not restrict to zero-forcing, but also consider
minimum mean square error interference suppression. It is
shown analytically that an optimized detection order has an
even larger impact in this case. Numerical examples provide
deeper insights into the underlying effects.

Categories and Subject Descriptors: G.3 [Probability
and Statistics]: Distribution Functions

General Terms: Theory.

Keywords: V-BLAST, SINR Distribution, Zero-Forcing,
MMSE, Ordered Successive Interference Cancellation.

1. INTRODUCTION
It is well known that very high spectral efficiencies can

be achieved by using multiple antennas at the transmitter
and the receiver [1]. One candidate for future mobile com-
munication systems is the V-BLAST architecture [2], where
independent data streams are transmitted from different an-
tennas. A detailed performance analysis for simple linear as
well as optimal maximum-likelihood receivers can be found
in [3]. However, things become more complicated for the
ordered successive interference cancellation (SIC) proposed
in [2]. In [4], it was shown that without ordering the di-
versity order of the k-th layer is given by NR − NT + k,
where NT and NR denote the number of transmit and re-
ceive antennas. The importance of an optimized detection
order for the information outage probability was highlighted
in [5], where a uniform power and rate allocation among a
subset of transmit antennas was conjectured to be optimal.
However, the required distribution of the layer-wise signal
to noise ratio (SNR) with optimal ordering was only ap-
proximated by Monte-Carlo simulations. The exact expres-
sion for the case of two transmit antennas was determined
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in [6] using the distribution of the angle between two com-
plex Gaussian vectors, which was also used to derive loose
bounds for NT > 2 in [7]. An alternative approach based
on the inverted complex Wishart distribution was recently
presented in [8].

The above mentioned publications assume perfect sup-
pression of the remaining interference by a zero-forcing (ZF)
filter. In this paper, we describe another and somewhat
more direct method to calculate the SNR distribution of or-
dered ZF-SIC, and extend it afterwards to analyze also the
signal to interference and noise ratio (SINR) if a minimum
mean square error (MMSE) filter is applied instead. Expect
for the simple case of unsorted ZF-SIC we will restrict to
only two transmit antennas; although our basic approach
may possibly be generalized, the resulting expressions be-
come quite involved. Several illustrations help to gain intu-
ition into the fundamental effects of optimizing the detection
order and MMSE filtering.

2. PRELIMINARIES AND NOTATION
Throughout this paper, vectors (matrices) are represented

by bold lower (upper) case letters. In is an identity matrix of
size n×n, E {·} the expectation operator, and (·)T and (·)H

denote transpose and Hermitian transpose, respectively. We
will frequently use the regularized incomplete gamma func-
tions [9]

Γ̃(n, x) =
Γ(n, x)

Γ(n)
=

Z ∞

x

tn−1e−t

Γ(n)
dt = e−x

n−1X
m=0

xm

m!
(1)

γ̃(n, x) =
γ(n, x)

Γ(n)
=

Z x

0

tn−1e−t

Γ(n)
dt = 1 − Γ̃(n, x) (2)

for integer argument n ≥ 1, and the integrals

aZ
0

tn−1e−t

Γ(n)

∞Z
b−ct

e−u du dt =

(
e−bγ̃(n,[1−c]a)

[1−c]n
, c 6= 1

ane−b

n!
, c = 1

(3)

as well as (for b 6= 0 and b 6= c)Z a

0

ebtγ̃(n, ct) dt =
eabγ̃(n, ac)

b
−

cnγ̃(n, [c − b]a)

[c − b]nb
(4)

will be required. Finally, the abbreviations cdf and pdf stand
for cumulative distribution function and probability density
function.



3. SYSTEM MODEL
Consider the equivalent baseband model of a single-user

multiple antenna system with NT transmit and NR ≥ NT

receive antennas. The channels are uncorrelated and flat
Rayleigh fading. Hence, the NR×NT channel matrix H con-
sists of independent circularly symmetric complex Gaussian
entries with zero mean and unit variance. The receive vector
is given by

y = Hx + n , (5)

where the vector x = [x1, . . . , xNT
]T with covariance matrix

E
�
xxH

	
= INT

contains independent transmit symbols,
and n represents circularly symmetric and white complex
Gaussian noise with variance σ2

n. Perfect channel state in-
formation is assumed at the receiver.

4. ZF-SIC WITHOUT ORDERING
For each layer (i.e., the data stream of one specific trans-

mit antenna), the following two steps are performed:

• The interference caused by already detected layers is
subtracted from the receive signal.

• The interference of the remaining layers is suppressed
by a linear filter.

The required filter matrices follow from the QL decomposi-
tion of the channel matrix H = QL, where the NR × NT

matrix Q has orthogonal columns with unit norm and L is
lower triangular with real-valued and nonnegative diagonal
elements [10]. Multiplying y with QH results in

z = QHy = Lx + ñ . (6)

The noise at the filter output ñ = QHn is still white with
variance σ2

n. For k = 1, . . . , NT , the estimate x̂k of xk can
be obtained by quantizing

x̃k =
1

lkk

 
zk −

k−1X
m=1

lkm · x̂m

!
(7)

=xk +

k−1X
m=1

lkm

lkk
(xm − x̂m) +

ñk

lkk
(8)

to the discrete symbol alphabet. Assuming correct decisions
in all previous detection steps (i.e., x̂m = xm), the SNR of
the k-th layer is given by

SNRk =
l2kk

σ2
n

, (9)

which is identical to the SINR, because the ZF filter com-
pletely removes all interference.

4.1 SNR Distribution
The QL decomposition may be interpreted as a special

change of the coordinate system in which the matrix H
is represented, with the columns of Q being the orthog-
onal base vectors. From the rotational invariance of the
multivariate Gaussian distribution of hk it can be deduced
that the elements of L are independent and lmk is complex
Gaussian for m > k. On the other hand, the squared column
norm

‖hk‖
2 =

NRX
m=1

|hmk|
2 = l2kk +

NTX
m=k+1

|lmk|
2 (10)

σ2nϑ

u

t

pl2
11

(t) · p|l21 |2(u)

Figure 1: On the calculation of PSNR1(ϑ
�� l222 = ξ) from

the joint pdf of l211 and |l21|
2 for ZF-SIC.
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Figure 2: Conditional cdf PSNR1(ϑ
�� l222 = ξ) for ZF-

SIC.

is a sum of NR exponential random variables; consequently,
l2kk must be χ2-distributed with 2(NR − NT + k) degrees of
freedom [11]. This leads to the pdf’s

pl2
kk

(t) =
tNR−NT +k−1e−t

Γ(NR − NT + k)
, (11)

p|lmk|2(t) = e−t , m > k (12)

that are zero for t < 0. From (9) and (2) we can now
immediately obtain the cdf of the SNR on the k-th layer

PSNRk
(ϑ) = Pr

�
l2kk < σ2

nϑ
	

= γ̃(NR −NT + k, σ2
nϑ) . (13)

As already mentioned in the introduction, we will focus
on the case of two transmit antennas in the following. In or-
der to determine the distribution of SINR1 for an optimized
detection order as well as MMSE interference suppression, it
needs to be conditioned on the second layer, as a start. For
the unsorted ZF-SIC considered here, this is of course identi-
cal to (13) due to the statistical independence of l11 and l22.
Thus, the conditional cdf shown in Fig. 2 for NR = 2 receive
antennas does not depend on ξ at all. Fig. 1 additionally
demonstrates how (13) can be calculated by integrating over
the joint pdf of l211 and |l21|

2. These figures serve as a refer-
ence for later comparison to illustrate the impact of sorting
and MMSE filtering.



5. ZF-SIC WITH OPTIMIZED ORDER
The order of detection is crucial for the performance of

SIC. It can be optimized by exchanging elements of the
transmit vector x and the corresponding columns of H. For
some permutation matrix Π, we define

x̌ = ΠT x , Ȟ = HΠ , Ȟ = Q̌Ľ . (14)

It can easily be verified that Ȟx̌ = Hx, because Π is or-
thogonal, so the receive vector in (5) is not affected. It was
shown in [2] that the minimum SNR among all transmitted
streams is maximized by a greedy approach which always
chooses the best layer to be detected next. Assuming that
the first k − 1 columns of Ȟ have already been determined,
ȟk must be selected from the remaining columns of H such
that ľ2kk is as large as possible. As the SNR’s after linear ZF
filtering with the pseudo-inverse Ȟ+ = Ľ−1Q̌H are inversely
proportional to the row norms of Ǧ = Ľ−1, the conditions

ǧ2
kk ≤

mX
n=k

|ǧmn|
2 ∀ m > k (15)

have to be satisfied. For two transmit antennas, (15) be-
comes

Ǧ =
1

ľ11 ľ22

�
ľ22 0

−ľ21 ľ11

�
⇒ ľ222 ≤ ľ211 + |ľ21|

2 . (16)

Note that this criterion is also employed by the efficient or-
dering algorithm proposed in [10], where the diagonal el-
ements ľkk are minimized in the order they are calculated
during the orthogonalization process (k = NT , . . . , 1) in-
stead of maximizing them in the opposite order. However,
for NT > 2 this approach is no longer guaranteed to be
optimal, though the loss is usually rather small.

5.1 SNR Distribution
From (16) and (10), it can be concluded that for the op-

timal permutation the squared second diagonal element is

ľ222 = min
�
‖h1‖

2, ‖h2‖
2	 (17)

Hence, we can apply order statistics [11] to obtain the cor-
responding cdf

Pľ222
(ξ) =1 −

�
Pr
�
‖hk‖

2 ≥ ξ
	�2

= 1 −
h
Γ̃(NR, ξ)

i2
=γ̃(NR, ξ) · [2 − γ̃(NR, ξ)] , (18)

and, similar to (13), the distribution of SNR2 is given by
PSNR2(ϑ) = Pľ222

(σ2
nϑ). Thus, the outage probability of the

second layer is approximately doubled by sorting if σ2
nϑ is

small, as already noted in [6].
Unfortunately, the diagonal elements of Ľ are not inde-

pendent anymore. However, as both detection orders are
equiprobable, the cdf of ľ211 conditioned on ľ222 = ξ is iden-
tical to that of l211 under the assumption that the natural
ordering Π = I2 is optimal for l222 = ξ. With (16) and (9),
this leads to the conditional cdf

PSNR1

�
ϑ
�� ľ222 = ξ

�
= Pl211

�
σ2

nϑ
�� l211 + |l21|

2 ≥ ξ
�

. (19)

Exploiting the statistical independence of l11 and l21, we

σ2nϑ

ξ

ξ u

t

pl2
11

(t) · p|l21 |2(u)

Figure 3: On the calculation of PSNR1(ϑ
�� ľ222 = ξ) from

the joint pdf of l211 and |l21|
2 for ordered ZF-SIC.
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Figure 4: Conditional cdf PSNR1(ϑ
�� ľ222 = ξ) for or-

dered ZF-SIC.

start by calculating the joint probability

Pr
�
l211 < σ2

nϑ , l211 + |l21|
2 ≥ ξ

	
=

Z σ2
nϑ

0

Z ∞

(ξ−t)+
pl211

(t) · p|l21|2
(u) du dt (20)

=

Z σ2
nϑ

0

tNR−2e−t

Γ(NR − 1)

Z ∞

(ξ−t)+
e−u dudt , (21)

where the shorthand notation (x)+ = max{x, 0} was intro-
duced. The limits of the integrals are illustrated in Fig. 3.
Compared to Fig. 1, a significant part of the joint pdf of l211
and |l21|

2 is disregarded in (20) due to the ordering criterion.
For σ2

nϑ > ξ, we just need to subtract the contribution of the
white triangle from (13), while (4) can be applied otherwise
to get

Pr
�
l211 < σ2

nϑ , l211 + |l21|
2 ≥ ξ

	
=

(
(σ2

nϑ)NR−1e−ξ/Γ(NR) , σ2
nϑ ≤ ξ

γ̃(NR − 1, σ2
nϑ) − γ̃(NR, ξ) , σ2

nϑ > ξ .
(22)

From (22), we can already deduce the intuitive result that
the impact of ordering on the SNR distribution of the first
layer is most pronounced if ξ is large; for ξ = 0, the con-
straint (16) is not effective at all. On the other hand, taking



the limit σ2
nϑ → ∞ yields

Pr
�
l211 + |l21|

2 ≥ ξ
	

= 1 − γ̃(NR, ξ) = Γ̃(NR, ξ) , (23)

which is the complementary cdf of ‖hk‖
2, so the conditional

cdf in (19) is given by

PSNR1(ϑ
�� ľ222 = ξ) =

Pr
�
l211 < σ2

nϑ , l211 + |l21|
2 ≥ ξ

	
Pr {l211 + |l21|2 ≥ ξ}

=

(
(σ2

nϑ)NR−1e−ξ/Γ(NR, ξ) , σ2
nϑ ≤ ξ

1 − Γ̃(NR − 1, σ2
nϑ)/Γ̃(NR, ξ) , σ2

nϑ > ξ .
(24)

Fig. 4 again shows an example for NR = 2. Comparing
this to Fig. 2, we find that optimal ordering reduces the
outage probability of the first layer for any given ξ > 0, and
especially for large values, as expected. Hence, the uncon-
ditional cdf of SNR1, which can be computed by averaging
(24) over ľ222, will also be decreased. The required pdf of ľ222
is obtained by taking the derivative of (18)

pľ222
(ξ) =

2ξNR−1e−ξ

Γ(NR)
Γ̃(NR, ξ) . (25)

With this, we finally arrive at

PSNR1(ϑ) =

Z ∞

0

PSNR1(ϑ
�� ľ222 = ξ) · pľ222

(ξ) dξ (26)

=
(σ2

nϑ/2)NR−1Γ̃(NR, 2σ2
nϑ)

Γ(NR)
+ 1 −

h
Γ̃(NR, σ2

nϑ)
i2

− 2Γ̃(NR − 1, σ2
nϑ) · γ̃(NR, σ2

nϑ) . (27)

The first term belonging to the case σ2
nϑ ≤ ξ in (24) re-

sults from (1) after the substitution ξ′ = 2ξ, and the other
ones immediately follow from (18) and (2). Note that (27)
can also be rewritten in terms of exponential functions and
polynomials using the relations in (1) and (2).

6. MMSE-SIC WITHOUT ORDERING
Following the approach of [12], we first define the QL de-

composition of the extended channel matrix

H =

�
H

σnINT

�
=

�
Q1

Q2

�
L . (28)

Then, using H = Q1L it can easily be verified that the linear
MMSE filter for the system model (5) is given by

(HHH + σ2
nINT

)−1HH = (HHH)−1HH = L−1QH
1 . (29)

Hence, MMSE-SIC is identical to the ZF-SIC described in
Section 4 with Q and L being replaced by Q1 and L, re-
spectively, and the filter output signal becomes

z = QH
1 y = Lx − σnQH

2 x + QH
1 ñ ; (30)

the second term in (30) represents a bias and remaining
interference. Using the relations QH

1 Q1 + QH
2 Q2 = INT

and Q2 = σnL−1, which follow from the properties of the
QL decomposition in (28), we find that the SINR of layer k
assuming no errors in previous detection steps is given by

SINRk =

�
lkk − σ2

n/lkk

�2
σ2

n − σ4
n/l2kk

=
l2kk

σ2
n

− 1 . (31)

This of course equals the SNR for the second layer, as the
interference has already been subtracted completely. Thus,
we can use the results derived for ZF-SIC and concentrate

σ2nϑ

(ξ + σ2n)ϑ
u

t

pl2
11

(t) · p|l21 |2(u)

Figure 5: On the calculation of PSINR1(ϑ
�� l222 = ξ) from

the joint pdf of l211 and |l21|
2 for MMSE-SIC.
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Figure 6: Conditional cdf PSINR1(ϑ
�� l222 = ξ) for

MMSE-SIC.

on the first layer. Observing that ‖hk‖
2 = ‖hk‖

2 + σ2
n and

|hH
2 h1|

2 = l222|l21|
2, we obtain

l211 =‖h1‖
2 − |hH

2 h1|
2/‖h2‖

2 (32)

=l211 + σ2
n +

σ2
n|l21|

2

l222 + σ2
n

, (33)

which can be plugged into (31) to get

SINR1 =
l211
σ2

n

+
|l21|

2

l222 + σ2
n

. (34)

Note that (34) corresponds to the SNR1 of ZF-SIC in (9)
for l222 → ∞, while it has the same distribution as SNR2 for
l222 = 0. Thus, unlike the linear ZF filter, the MMSE filter
benefits from small SNR’s on the second layer, because less
interference needs to be suppressed.

6.1 SINR Distribution
From (34) it follows that the SINR distribution of the first

layer conditioned on l222 = ξ can be calculated by integrating
the joint pdf of l211 and |l21|

2 over the region sketched in



Fig. 5. With (2) and (3) we get

P SINR1(ϑ
�� l222 = ξ) = Pr

�
l211
σ2

n

+
|l21|

2

ξ + σ2
n

< ϑ

�
=

Z σ2
nϑ

0

tNR−2e−t

Γ(NR − 1)

Z [ξ+σ2
n]ϑ−

ξ+σ2
n

σ2
n

t

0

e−u dudt (35)

=γ̃(NR − 1, σ2
nϑ) −

e−(ξ+σ2
n)ϑγ̃(NR − 1,−ϑξ)

(−ξ/σ2
n)NR−1

. (36)

In line with the above observations, the first term is the
cdf of SNR1 for ZF-SIC, while the other one vanishes for

ξ → ∞, and becomes e−σ2
nϑ(σ2

nϑ)NR−1/Γ(NR) for ξ → 0,
so that the cdf converges to γ̃(NR, σ2

nϑ). An example for
NR = 2 and σ2

n = 1 is shown in Fig. 6. Here, the conditional
outage probability decreases for small values of ξ. This is
just opposite to the case of ordered ZF-SIC in Fig. 4, where
a large ξ improves the performance of the first layer.

Noting that (4) tends to −cn/([c− b]nb) for b < c < 0 and
a → ∞, the unconditional cdf

PSINR1(ϑ) =

Z ∞

0

PSINR1(ϑ
�� l222 = ξ) · pl222

(ξ) dξ

=γ̃(NR − 1, σ2
nϑ) −

(σ2
nϑ)NR−1e−σ2

nϑ

Γ(NR) · [ϑ + 1]
(37)

can also easily be determined. In contrast to ZF interference
suppression it does not only depend on the product σ2

nϑ, but
also on ϑ itself.

7. MMSE-SIC WITH OPTIMIZED ORDER
We now finally turn to the case of ordered MMSE-SIC.

Similar to Section 5, the permutation must be chosen such
that the diagonal element ľ222 is as small as possible in order
to maximize SINR1. However, this now additionally means
that less interference needs to be suppressed by the linear
MMSE filter in the first step. Hence, it may already be con-
jectured that the impact of sorting is much more pronounced
for MMSE-SIC. The derivation of the SINR distribution is
similar to those for ordered ZF-SIC, so we will subsequently
focus on the main results and omit intermediate steps.

7.1 SINR Distribution
Combining Fig. 3 with Fig. 5, we find that the joint pdf

of l211 and |l21|
2 must be integrated over the region depicted

in Fig. 7 in order to obtain the joint probability

Pr

�
l211
σ2

n

+
|l21|

2

ξ + σ2
n

< ϑ , l211 + |l21|
2 ≥ ξ

�
(38)

=

8>>>>>>>>>><>>>>>>>>>>:
0 , ξ ≥ [ξ + σ2

n]ϑ

[ξ−(ξ+σ2
n)ϑ]NR−1e−ξ

Γ(NR)·(−ξ/σ2
n)NR−1

−
e−(ξ+σ2

n)ϑγ̃(NR−1,ξ−[ξ+σ2
n]ϑ)

(−ξ/σ2
n)NR−1 , σ2

nϑ ≤ ξ < [ξ + σ2
n]ϑ

γ̃(NR − 1, σ2
nϑ) − γ̃(NR, ξ)

− e−(ξ+σ2
n)ϑγ̃(NR−1,−ϑξ)

(−ξ/σ2
n)NR−1 , σ2

nϑ > ξ .

In the second case, the two boundaries (ξ + σ2
n)(ϑ − t/σ2

n)
and ξ− t intersect, while the third case directly follows from
(22) and (36). For σ2

nϑ → ∞ we get (23) again. Thus, divid-

ing (38) by Γ̃(NR, ξ) yields the cdf of SINR1 with optimal

σ2nϑ

(ξ + σ2n)ϑ

ξ

ξ u

t

pl2
11

(t) · p|l21 |2(u)

Figure 7: On the calculation of PSINR1(ϑ
�� ľ222 = ξ) from

the joint pdf of l211 and |l21|
2 for ordered MMSE-SIC.
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� � ľ2 2
2

=
ξ)

Figure 8: Conditional cdf PSINR1(ϑ
�� ľ222 = ξ) for or-

dered MMSE-SIC.

sorting conditioned on ľ222 = ξ

PSINR1(ϑ
�� ľ222 = ξ) (39)

=

8>>>>>>>>>><>>>>>>>>>>:
0 , ξ ≥ [ξ + σ2

n]ϑ

[ξ−(ξ+σ2
n)ϑ]NR−1e−ξ

Γ(NR,ξ)·(−ξ/σ2
n)NR−1

−
e−(ξ+σ2

n)ϑγ̃(NR−1,ξ−[ξ+σ2
n]ϑ)

Γ̃(NR,ξ)·(−ξ/σ2
n)NR−1 , σ2

nϑ ≤ ξ < [ξ + σ2
n]ϑ

1 − Γ̃(NR − 1, σ2
nϑ)/Γ̃(NR, ξ)

− e−(ξ+σ2
n)ϑγ̃(NR−1,−ϑξ)

Γ̃(NR,ξ)·(−ξ/σ2
n)NR−1 , σ2

nϑ > ξ .

In order to avoid numerical problems, the incomplete gamma
functions with negative second argument in (39) should be
replaced by the polynomial representation in (1), and the
exponential relation ea · eb = ea+b should be applied.

From Fig. 8 it can be observed that the outage probability
is significantly reduced for all values of ξ. For small ξ this
is mainly a consequence of MMSE filtering, while for large
ξ sorting plays a major role. The unconditional cdf is again
calculated by taking the expectation of (39) over ľ222. With
adequate substitutions we can use (4) to obtain after some



simplifications

PSINR1(ϑ) =1 −
h
Γ̃(NR, σ2

nϑ)
i2

− 2Γ̃(NR − 1, σ2
nϑ) · γ̃(NR, σ2

nϑ)

+
(−σ2

n)NR−1

Γ(NR)

"
(−σ2

nϑ2)NR−1

Γ(NR)
e−2σ2

nϑ (40)

−
2(−ϑ)NR−1

ϑ + 1
e−σ2

nϑγ̃(NR − 1, σ2
nϑ)

+
(1 − ϑ)NRe

2σ2
nϑ

ϑ−1

2NR−1(ϑ + 1)
Υ

�
NR − 1,

2σ2
nϑ2

ϑ − 1

�#
with Υ(n, x) =

(
γ̃(n, x) , x ≤ 0

−Γ̃(n, x) , x > 0 .
(41)

The two different cases must be distinguished, because the
first condition in (39) is never fulfilled for ϑ ≥ 1, which
affects the limits of the integrals.

8. NUMERICAL RESULTS
Fig. 9 depicts the layer-wise SINR distributions for a mul-

tiple antenna system with two transmit and receive anten-
nas. The thin lines represent the second layer with no, op-
timal, or inverted sorting, i.e. ľ222 = max{‖h1‖

2, ‖h2‖
2}. As

already noted in Section 5, optimal sorting approximately
doubles the outage probability in this detection step. In
contrast, the curve of the first layer is shifted to the right
by 3 dB for ZF-SIC. The three different curves for MMSE-
SIC belong to increasing noise variances (from left to right).
For strong noise, the interference can be neglected, and the
SINR distribution is close to that of the second layer with
the inverse ordering applied. On the other hand, for small
values of σ2

n, MMSE-SIC performs similar to ZF-SIC over a
wide range, but eventually decreases for sufficiently small
ϑ. With optimal sorting, the outage probability rapidly
converges to the interference-free case for ϑ < 1, while a
constant gap remains without optimized detection order.
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Figure 9: SINR distributions for NT = NR = 2 and
σ2

n ∈ {0.01, 0.1, 1} (required only for MMSE-SIC).

9. CONCLUSION
We have presented a new unified approach to the SINR

analysis of V-BLAST with (ordered) ZF- or MMSE-SIC de-
tection. Based on geometrical considerations, the SINR dis-
tribution of the first layer was calculated for different re-
ceiver architectures by first conditioning on, and then aver-
aging over the effective channel gain of the second layer. The
effects of an optimized detection order and MMSE interfer-
ence suppression were investigated separately and visualized
by means of the conditional cdf of SINR1. Furthermore, it
was shown analytically that the optimal ordering is even
more important in combination with MMSE filtering.
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