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Abstract— The maximization of a weighted sum of data rates is Il. PROBLEM STATEMENT

an essential point in cross-layer based resource allocatioSeveral : e ol
algorithms have been proposed in the literature to solve tls Consider a multiple-input multiple-output (MIMO) system

problem for the downlink of a multiple antenna system employng ~ With Nu users, where the central base station is equipped with
dirty paper precoding at the base station. However, they all N antennas and each mobile terminal hég antennas. It
suffer from a relatively slow convergence if the true number was demonstrated in [4] that in the downlink all feasibleerat
of objective function evaluations is taken into account. Inthis tuples can be achieved by so-called dirty paper precoding.
paper, an improved conjugate gradient method is presentedhat 4 armore, the capacity region is identical to that of aldu
takes the power constraint into account in the calculation 6the . ' . .
search direction. Its superior convergence properties copared Multiple access channel with the same total transmit power

to existing approaches are verified by Monte-Carlo simulatns [5]. We will focus on this equivalent uplink problem, as it is

for various scenarios. in general much easier to handle, so the system model is given
by
|. INTRODUCTION Ny Ny
y:ZHua:qun:ZHuTudqun, D
In order to assure certain quality of service parameteisan t u=1 u=1

downlink of a wireless communication system, the schedulgherey ¢ €5 is the vector of receive signals at the base
has to take information from different layers of the protocaation, H,, € ¢Ve* v andz, € CMv are the dual uplink
stack into account. This task is usually performed in tWghannel matrix and transmit vector of user respectively,
stages: First, priorities are assigned to each user baséteongng, ¢ Ve represents additive white Gaussian noise with
type of application and the current queue states. Aftersiardoyariance matrixz{nn'} = I; furthermore, the transmit
resources are allocated by maximizing the weighted sum Qfna| , follows from multiplying the uncorrelated unit
achievable data rates, which requires some kind of changgliance Gaussian symbols in vecthy with the filter matrix
knowledge at the base station. E.g., using the queue lengjhs - ¢NuxNu_ Denoting the transmit covariance matrices
as priority measures minimizes the risk of buffer overflodls [ a5 Q, = E{x,x} = T, TH, the power constraint can be
while setting the weighting factors equal to the inverseage expressed as

throughput leads to the proportional fair scheduling polij. No No

Another more sophisticated choice aims at the minimization _ 2

the average packet delay [3]. In this paper, we will focushen t ;tr(Qu) N ;HT“HF sP. 2)

second part of the described cross-layer scheduling apiproa Dirty paper coding at the base station corresponds to suc-

namely the optimal resource allocation for arbitrarily egiv R N .
y P Y cessive interference cancelation in the dual uplink, wreere

weights if both the base station and the mobile terminals aré™ . ; .
; . . user is not interfered by previous ones. Assume that thesuser
equipped with multiple antennas.

In the followi . th ‘ del is introd a:e decoded in the ordéfy to 1. Then, the receive covariance
n the following section, the system model is introduced _..« tor thek-th user becomes

and the weighted sum rate is derived. Section Il contains a X

comprehensive overview of existing algorithms for the Sohu &, — 1 H HY _ & H.O.H" 3
of this and related optimization problems. The discussibn o k + ; uQuH, k-1 + HyQrH ,  (3)
their pros and cons serves as a motivation for the projecte o _ : L
conjugate gradient method proposed in Section V. Numltzric\(’:z%ﬂgirr:e dsi’;];érfvg;tehniofrgrrfshebpsrgsﬁgft ltjgzrgﬁ_?ﬁtelvfopr;se ':
results confirming the fast convergence of our new approa&ﬁta rgte is qiven b q ' 9
for arbitrary system parameters are provided in Sectiomd, a 9 y

concluding remarks can be found in Section VI. Ry, = log, det(Py,) — log, det(Pr—1) . 4



Note that the term containing, appears in bottk;, andR,,,; Algorithm 1 Conjugate Gradient with Projection

with different sign, so using (4) the weighted sum rate may,. Initialize T = ./—P—IYu. S =0 p=1a=1
be written as 2 repeat ¢ NoNu™ 7™ ’ '
Nu Ny . _ — —
3 StoreTo,iq =T, Soia = S, pold = p
Zkak = Zwk (logy det(®y,) —logy det(Pr-1)) (5) 4 Calculate gradien@ = [G1,...,Gn,]
k=1

o, 5. Normalize gradienG = , /2> G

Ny G
=D (W — wi 1) logy det(®Py) (6) 6 Project gradienG = G — %ﬁ;:%) T
k= . -
with 01 For notational simplicity, we will use the 7: Caleulate Frobenius norm = HGH?
WNy+1 = 0. ; : rch directiof = G + -2
abbreviationA;, = wy — wy, in the following. 8  Update search directioff = G + ;7 Sou

In order to maximize (6) the users must be sorted accordin& Step |n.search dwgcpoﬁ’ =Toa +PO‘S~
Normalize transmit filterd” = , / =T

to their priorities such thai; > ... > wy, and consequently 0 B
A > 0 Yk, which will be assumed in the following without 11:  if no (sufficient) improvemerthen

loss of generality [6]. For the optimal decoding order, thé2: Decrease step size (and setS = G)
weighted sum rate is a concave function with respect ts: Go to step 9
the covariance®) = [Q1,...,QnN,], and the feasible set 14: end if

of positive semidefinite matrices fulfilling the total power1s: until desired accuracy reached
constraint (2) is convex. Hence, the optimization problem
could be solved by standard interior point methods [7], bat t
possibly large number of parameters calls for more efficietite largest eigenvalue among all users. Recently, a pegject
algorithms. conjugate gradient algorithm was proposed in [6], that was
1. EXISTING ALGORITHMS originally developed for pure sum rate_maximizatior? in [16]
’ The Fletcher-Reeves [17] search direction is used withedut t

For the special case of equal priorities, (6) degenerati®to jng the power constraint into account. It will be demonstdat
pure sum rate. In [8], an iterative waterfilling approacheuhs jn Section IV that this is a major drawback.
on the eigenvalue decomposition of effective channel wegri  The orthogonal projection of the transmit covariance matri
was presented for the uplink with individual power constt&i ces onto the feasible set requires an eigenvalue decorigposit
per user. Unfortunately, updating all users simultangonmsly  for each user. A very simple projected gradient method based
fail to converge if only the total transmit power is fixed inon the transmit filterd” = [T, ..., T, ] was used in [18] for
each iteration. In [9], two variants of a globally converienhe related weighted sum mean square error minimizatioa. Th
cyclic coordinate ascent algorithm are proposed, wherestraprojection onto the power constraint now simplifies to a mere
mit covariance matrices are averaged over the current agtgying, and, in contrast to the transmit covariance mesriE,
previous iterations. The speed of convergence was significa does not have to be positive semidefinite. However, after thi
increased by a simple approximate line search in [10]. &tstechange of variables, the objective function (6) is not corca
of that, the covariance matrices of randomly selected usies p anymore, but it was argued in [19] that every stationary poin
are optimized in [11], while in [12] users are successivelorresponds to a global optimum. This is also exploited & th

updated for fixed waterfilling level, which is adjusted in aRjternating optimization approach [20], whose complexity
outer loop until the desired total transmit power is reachedroughly cubic in the number of users, though.

For arbitrary weight factors, the problem gets much more
involved. The basic concepts of [9] and [10] are adopted in IV. PROPOSEDALGORITHM
[13] for mobile terminals with a single antenna, but now a In this section, we propose a projected conjugate gradient
function has to be inverted numerically to obtain the traihsnlgorithm for the optimization of transmit filter matriceghe
powers for a given water level. Similarly, the principle ofvhole procedure is outlined in Algorithm 1, where the itemat
[12] is used in [14] for a MISO-OFDM system. The wholgndex has been omitted in order to simplify notation. Fitisg
algorithm consists of three nested loops, where each hasgtadientG is calculated. Using elementary matrix calculus, it
be repeated until a certain accuracy is reached. Furtheim@an be shown that the partial derivative of the weighted sum
if the power of useru is modified, then all inverse receiverate (6) with respect td’; is proportional to
covariance matrice&,;1 for k > uw must be recalculated, so <

from this point of view it is better to update all users at the @G, = H}f
same time. Nevertheless, these waterfilling-based proesdu
are supposed to be faster than the steepest descent meth

[15], which can be used for general MIMO systems, thoug
Here, the gradient of the weighted sum rate with respectdo

transmit covariance matrices is determined, and a linechesr )
performed in the direction of the eigenvector correspogdin &' =&, ' —B,(I+A]B:) By (8)

Nu
> Ak¢k1> H,T,=HW,H,T,, (7)
k=u

h%fre the cumulative sus, = ¥, 1 + A, ' can be com-
uted in a recursive manner. Likewise, the matrix inversion

mma Yields the update equation



proper choice of the deflection coefficignis not so obvious.
The best results were obtained by summing up the absolute
values of the diagonal elements Gf,, which is motivated by

the relation||T, |2 = tr(Q.). Unfortunately, the projection

of Q onto the feasible set is much more involved than
before, as the transmit covariance matrices additionaieh

, G o to be positive semidefinite. According to [6], the eigenealu
- T decomposition, = VuAuVuH has to be calculated to this
G ;1 end, which leads to
t1 Q. = V, max(A, — vI,0) VuH , (9)
Fig. 1. lllustration of the gradient projection where the maximum is taken element-wise, anchas to
be determined iteratively such that the power constraint is
fulfilled.
with A, = H, T, andB;, = @g_llAk. For the important case
where the base station has more antennas than the mobjles, (8 V. NUMERICAL RESULTS
is much more efficient than directly inverting. The performance of the proposed conjugate gradient algo-

The normalization of the gradient ensures that the spesthm with projection (CGP) was analyzed for various system
of convergence becomes more or less independenP of parameters. The gradient projection method (GP) from [18]
but the key feature is the projection of the gradient befotging the search directio§ = G serves as a benchmark.
the deflection. This is illustrated in Figure 1 for a simplés a measure for the complexity, we use the number of
example with two single-antenna terminals. In [6], the conransmit filter or covariance matrix updates per user uhtl t
jugate gradiens§ is calculated exactly as in the unconstrainerklative error between the current and the true weighted sum
case based ofix. However, for the constrained optimizatiorvate is smaller thari0—*, because this always necessitates a
problem considered here, the gradient is usually not zerorigcalculation of the inverse receive covariance matriégé.
the optimum, but orthogonal to the boundary of the feasiblhe channel matrices are assumed to contain uncorrelated
set. As a consequence, the old search direcfign always complex Gaussian entries with unit variance, and the pigsri
significantly contributes to the new one, and the algorithaym are chosen as uniformly distributed integers between 1 @nd 1
even try to step out of the optimum again. This undesirabme results are shown in Figure 2. It can be observed that the
behavior is prevented by taking the tangential component pfoposed CGP method features excellent convergence proper
the gradientG instead. If the projected gradients point intaies irrespective of the number of users, mobile antennas, a
similar directions in consecutive iterations, they add ug atotal transmit power, in particular when applied to the $rait
the effective step size is increased. On the other hand, fiiters T. Especially at small signal to noise ratios, the implicit
oscillations around the optimum often encountered in pusglaptation of the step size resulting from the conjugatechea
gradient ascent algorithms are largely avoided. directions leads to a significant speed-up. The optiminatio

Once the search direction is found, the transmit filters atiee transmit covariance matrices is mostly attractive fiogle-
updated and normalized such that the power constraintaistenna mobiles due to the required eigenvalue decommositi
fulfilled. An approximate line search could be performed dbr Ny > 1, but the performance of both variants is quite
this point, e.g. according to Armijo’s rule as in [6], but itsimilar in this case. Interestingly, the simple gradiegbaithm
usually suffices to reduce the step sizeby a factor if the is slightly better than CGP in Figure 2c. This happens bexaus
weighted sum rate does not increase. Additionally, it may ier NyNy < Ny the equal power initialization is already
advantageous to reset the search direction to the projectéske to optimal, and using the projected gradient the CGP

gradient in this case. method may step over the optimum in the first iteration. As
L ) ) mentioned before, this could be avoided by an approximate
A. Optimization of Covariance Matrices line search, but the additional complexity does not pay mwff i

With some modifications, the described algorithm can algeneral.
be used for the optimization of the transmit covariance ma-
trices Q. Then, the gradient simplifies &, = H!'w, H,, ) R )
and the normalization should be such that the sur () A new algorithm for the maximization of the weighted sum
over all active users equalB; note that with (7), switched rate in the MIMO-downlink was presented. In contrast to a
off users automatically do not contribute to the gradienemh recently published conjugate gradient approach, a pioject
considering transmit filters. The projection of the gradiemw S performed before the deflection of the search direction.
corresponds t6:,, = G, — I, where the constantis chosen The method was applied to the optimization of both transmit
such that the diagonal elements of @, (again only for active covariance and filter matrices, where the latter converged
users) sum up to zero. Hence, the total transmit power dd@§ter in most cases and has the advantage that no eigenvalue
not change when addin@ to the covariance matrice3. The decomposition is required.

VI. CONCLUSION
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