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Abstract— The maximization of a weighted sum of data rates is
an essential point in cross-layer based resource allocation. Several
algorithms have been proposed in the literature to solve this
problem for the downlink of a multiple antenna system employing
dirty paper precoding at the base station. However, they all
suffer from a relatively slow convergence if the true number
of objective function evaluations is taken into account. Inthis
paper, an improved conjugate gradient method is presented,that
takes the power constraint into account in the calculation of the
search direction. Its superior convergence properties compared
to existing approaches are verified by Monte-Carlo simulations
for various scenarios.

I. I NTRODUCTION

In order to assure certain quality of service parameters in the
downlink of a wireless communication system, the scheduler
has to take information from different layers of the protocol
stack into account. This task is usually performed in two
stages: First, priorities are assigned to each user based onthe
type of application and the current queue states. Afterwards,
resources are allocated by maximizing the weighted sum of
achievable data rates, which requires some kind of channel
knowledge at the base station. E.g., using the queue lengths
as priority measures minimizes the risk of buffer overflows [1],
while setting the weighting factors equal to the inverse average
throughput leads to the proportional fair scheduling policy [2].
Another more sophisticated choice aims at the minimizationof
the average packet delay [3]. In this paper, we will focus on the
second part of the described cross-layer scheduling approach,
namely the optimal resource allocation for arbitrarily given
weights if both the base station and the mobile terminals are
equipped with multiple antennas.

In the following section, the system model is introduced
and the weighted sum rate is derived. Section III contains a
comprehensive overview of existing algorithms for the solution
of this and related optimization problems. The discussion of
their pros and cons serves as a motivation for the projected
conjugate gradient method proposed in Section IV. Numerical
results confirming the fast convergence of our new approach
for arbitrary system parameters are provided in Section V, and
concluding remarks can be found in Section VI.

II. PROBLEM STATEMENT

Consider a multiple-input multiple-output (MIMO) system
with NU users, where the central base station is equipped with
NB antennas and each mobile terminal hasNM antennas. It
was demonstrated in [4] that in the downlink all feasible rate
tuples can be achieved by so-called dirty paper precoding.
Furthermore, the capacity region is identical to that of a dual
multiple access channel with the same total transmit power
[5]. We will focus on this equivalent uplink problem, as it is
in general much easier to handle, so the system model is given
by

y =

NU
∑

u=1

Huxu + n =

NU
∑

u=1

HuTudu + n , (1)

wherey ∈ CNB is the vector of receive signals at the base
station,Hu ∈ CNB×NM and xu ∈ CNM are the dual uplink
channel matrix and transmit vector of useru, respectively,
and n ∈ CNB represents additive white Gaussian noise with
covariance matrixE{nnH} = I; furthermore, the transmit
signal xu follows from multiplying the uncorrelated unit
variance Gaussian symbols in vectordu with the filter matrix
Tu ∈ CNM×NM . Denoting the transmit covariance matrices
as Qu = E{xuxH

u } = Tu T H
u , the power constraint can be

expressed as
NU
∑

u=1

tr(Qu) =

NU
∑

u=1

‖Tu‖
2
F ≤ P . (2)

Dirty paper coding at the base station corresponds to suc-
cessive interference cancelation in the dual uplink, wherea
user is not interfered by previous ones. Assume that the users
are decoded in the orderNU to 1. Then, the receive covariance
matrix for thek-th user becomes

Φk = I +

k
∑

u=1

HuQuHH
u = Φk−1 + HkQkHH

k , (3)

whereΦk−1 with Φ0 = I represents the effective noise in-
cluding interference from subsequent users. The corresponding
data rate is given by

Rk = log2 det(Φk) − log2 det(Φk−1) . (4)



Note that the term containingΦk appears in bothRk andRk+1

with different sign, so using (4) the weighted sum rate may
be written as

NU
∑

k=1

wkRk =

NU
∑

k=1

wk

(

log2 det(Φk) − log2 det(Φk−1)
)

(5)

=

NU
∑

k=1

(wk − wk+1) log2 det(Φk) (6)

with wNU+1 = 0. For notational simplicity, we will use the
abbreviation∆k = wk − wk+1 in the following.

In order to maximize (6) the users must be sorted according
to their priorities such thatw1 ≥ . . . ≥ wNU

and consequently
∆k ≥ 0 ∀k, which will be assumed in the following without
loss of generality [6]. For the optimal decoding order, the
weighted sum rate is a concave function with respect to
the covariancesQ = [Q1, . . . , QNU

], and the feasible set
of positive semidefinite matrices fulfilling the total power
constraint (2) is convex. Hence, the optimization problem
could be solved by standard interior point methods [7], but the
possibly large number of parameters calls for more efficient
algorithms.

III. E XISTING ALGORITHMS

For the special case of equal priorities, (6) degenerates tothe
pure sum rate. In [8], an iterative waterfilling approach based
on the eigenvalue decomposition of effective channel matrices
was presented for the uplink with individual power constraints
per user. Unfortunately, updating all users simultaneously may
fail to converge if only the total transmit power is fixed in
each iteration. In [9], two variants of a globally convergent
cyclic coordinate ascent algorithm are proposed, where trans-
mit covariance matrices are averaged over the current and
previous iterations. The speed of convergence was significantly
increased by a simple approximate line search in [10]. Instead
of that, the covariance matrices of randomly selected user pairs
are optimized in [11], while in [12] users are successively
updated for fixed waterfilling level, which is adjusted in an
outer loop until the desired total transmit power is reached.

For arbitrary weight factors, the problem gets much more
involved. The basic concepts of [9] and [10] are adopted in
[13] for mobile terminals with a single antenna, but now a
function has to be inverted numerically to obtain the transmit
powers for a given water level. Similarly, the principle of
[12] is used in [14] for a MISO-OFDM system. The whole
algorithm consists of three nested loops, where each has to
be repeated until a certain accuracy is reached. Furthermore,
if the power of useru is modified, then all inverse receive
covariance matricesΦ−1

k for k ≥ u must be recalculated, so
from this point of view it is better to update all users at the
same time. Nevertheless, these waterfilling-based procedures
are supposed to be faster than the steepest descent method of
[15], which can be used for general MIMO systems, though.
Here, the gradient of the weighted sum rate with respect to the
transmit covariance matrices is determined, and a line search is
performed in the direction of the eigenvector corresponding to

Algorithm 1 Conjugate Gradient with Projection

1: Initialize Tu =
√

P
NUNM

I ∀u, S = 0, ρ = 1, α = 1

2: repeat
3: StoreTold = T , Sold = S, ρold = ρ

4: Calculate gradientG = [G1, . . . , GNU
]

5: Normalize gradientḠ =
√

P
‖G‖2

F

G

6: Project gradientǦ = Ḡ −
tr(T

H
Ǧ)

tr(T HT ) T

7: Calculate Frobenius normρ =
∥

∥Ǧ
∥

∥

2

F

8: Update search directionS = Ǧ + ρ
ρold

Sold

9: Step in search directioñT = Told + αS

10: Normalize transmit filtersT =
√

P

‖T̃ ‖2

F

T̃

11: if no (sufficient) improvementthen
12: Decrease step sizeα (and setS = Ǧ)
13: Go to step 9
14: end if
15: until desired accuracy reached

the largest eigenvalue among all users. Recently, a projected
conjugate gradient algorithm was proposed in [6], that was
originally developed for pure sum rate maximization in [16].
The Fletcher-Reeves [17] search direction is used without tak-
ing the power constraint into account. It will be demonstrated
in Section IV that this is a major drawback.

The orthogonal projection of the transmit covariance matri-
ces onto the feasible set requires an eigenvalue decomposition
for each user. A very simple projected gradient method based
on the transmit filtersT = [T1, . . . , TNU

] was used in [18] for
the related weighted sum mean square error minimization. The
projection onto the power constraint now simplifies to a mere
scaling, and, in contrast to the transmit covariance matrices,Tu

does not have to be positive semidefinite. However, after this
change of variables, the objective function (6) is not concave
anymore, but it was argued in [19] that every stationary point
corresponds to a global optimum. This is also exploited in the
alternating optimization approach [20], whose complexityis
roughly cubic in the number of users, though.

IV. PROPOSEDALGORITHM

In this section, we propose a projected conjugate gradient
algorithm for the optimization of transmit filter matrices.The
whole procedure is outlined in Algorithm 1, where the iteration
index has been omitted in order to simplify notation. First,the
gradientG is calculated. Using elementary matrix calculus, it
can be shown that the partial derivative of the weighted sum
rate (6) with respect toT H

u is proportional to

Gu = HH
u

(

NU
∑

k=u

∆kΦ−1
k

)

HuTu = HH
u ΨuHuTu , (7)

where the cumulative sumΨu = Ψu+1 +∆uΦ−1
u can be com-

puted in a recursive manner. Likewise, the matrix inversion
lemma yields the update equation

Φ−1
k = Φ−1

k−1 − Bk

(

I + AH
k Bk

)−1
BH

k (8)
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Fig. 1. Illustration of the gradient projection

with Ak = HkTk andBk = Φ−1
k−1Ak. For the important case

where the base station has more antennas than the mobiles, (8)
is much more efficient than directly invertingΦk.

The normalization of the gradient ensures that the speed
of convergence becomes more or less independent ofP ,
but the key feature is the projection of the gradient before
the deflection. This is illustrated in Figure 1 for a simple
example with two single-antenna terminals. In [6], the con-
jugate gradientS is calculated exactly as in the unconstrained
case based onG. However, for the constrained optimization
problem considered here, the gradient is usually not zero in
the optimum, but orthogonal to the boundary of the feasible
set. As a consequence, the old search directionSold always
significantly contributes to the new one, and the algorithm may
even try to step out of the optimum again. This undesirable
behavior is prevented by taking the tangential component of
the gradientǦ instead. If the projected gradients point into
similar directions in consecutive iterations, they add up and
the effective step size is increased. On the other hand, the
oscillations around the optimum often encountered in pure
gradient ascent algorithms are largely avoided.

Once the search direction is found, the transmit filters are
updated and normalized such that the power constraint is
fulfilled. An approximate line search could be performed at
this point, e.g. according to Armijo’s rule as in [6], but it
usually suffices to reduce the step sizeα by a factor if the
weighted sum rate does not increase. Additionally, it may be
advantageous to reset the search direction to the projected
gradient in this case.

A. Optimization of Covariance Matrices

With some modifications, the described algorithm can also
be used for the optimization of the transmit covariance ma-
trices Q. Then, the gradient simplifies toGu = HH

u ΨuHu,
and the normalization should be such that the sum oftr

(

Ḡu

)

over all active users equalsP ; note that with (7), switched
off users automatically do not contribute to the gradient when
considering transmit filters. The projection of the gradient now
corresponds tǒGu = Ḡu−µI, where the constantµ is chosen
such that the diagonal elements of allǦu (again only for active
users) sum up to zero. Hence, the total transmit power does
not change when addinǧG to the covariance matricesQ. The

proper choice of the deflection coefficientρ is not so obvious.
The best results were obtained by summing up the absolute
values of the diagonal elements ofǦu, which is motivated by
the relation‖Tu‖

2
F = tr(Qu). Unfortunately, the projection

of Q̃ onto the feasible set is much more involved than
before, as the transmit covariance matrices additionally have
to be positive semidefinite. According to [6], the eigenvalue
decompositionQ̃u = VuΛuV H

u has to be calculated to this
end, which leads to

Qu = Vu max(Λu − νI, 0) V H
u , (9)

where the maximum is taken element-wise, andν has to
be determined iteratively such that the power constraint is
fulfilled.

V. NUMERICAL RESULTS

The performance of the proposed conjugate gradient algo-
rithm with projection (CGP) was analyzed for various system
parameters. The gradient projection method (GP) from [18]
using the search directionS = Ḡ serves as a benchmark.
As a measure for the complexity, we use the number of
transmit filter or covariance matrix updates per user until the
relative error between the current and the true weighted sum
rate is smaller than10−4, because this always necessitates a
recalculation of the inverse receive covariance matricesΦ−1

k .
The channel matrices are assumed to contain uncorrelated
complex Gaussian entries with unit variance, and the priorities
are chosen as uniformly distributed integers between 1 and 10.
Some results are shown in Figure 2. It can be observed that the
proposed CGP method features excellent convergence proper-
ties irrespective of the number of users, mobile antennas, and
total transmit power, in particular when applied to the transmit
filters T . Especially at small signal to noise ratios, the implicit
adaptation of the step size resulting from the conjugate search
directions leads to a significant speed-up. The optimization of
the transmit covariance matrices is mostly attractive for single-
antenna mobiles due to the required eigenvalue decomposition
for NM > 1, but the performance of both variants is quite
similar in this case. Interestingly, the simple gradient algorithm
is slightly better than CGP in Figure 2c. This happens because
for NUNM ≤ NB the equal power initialization is already
close to optimal, and using the projected gradient the CGP
method may step over the optimum in the first iteration. As
mentioned before, this could be avoided by an approximate
line search, but the additional complexity does not pay off in
general.

VI. CONCLUSION

A new algorithm for the maximization of the weighted sum
rate in the MIMO-downlink was presented. In contrast to a
recently published conjugate gradient approach, a projection
is performed before the deflection of the search direction.
The method was applied to the optimization of both transmit
covariance and filter matrices, where the latter converged
faster in most cases and has the advantage that no eigenvalue
decomposition is required.
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c) NB = 8, NM = 1, NU = 4
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d) NB = 8, NM = 1, NU = 100
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Fig. 2. Convergence behavior of the optimization algorithms for different
system parameters. The left bars correspond toP = 1 and the right ones to
P = 100, respectively.
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