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Abstract— This paper deals with joint data detection and
channel estimation for single input single output systems in
presence of inter symbol interference. Therefore, deterministic
methods, the Gibbs-sampler and combinations between determin-
istic and Monte Carlo approaches are compared. The examined
methods belong to the class of block by block iterative algorithms
alternating between channel estimation and data detection. It
will be shown that the deterministic method might get trapped
in a local maximum of the likelihood function, whereas the
Monte Carlo methods theoretically almost converge to a global
maximum. Based on simulation results it will be shown that
a performance gain can be achieved at the expense of slower
convergence speed or an increased computational effort.

I. INTRODUCTION

The requirements of spectral efficiency for wireless com-
munication systems are still growing. In order to get reli-
able transmission, the receiver of a wireless communication
link requires channel state information. Usually, a pilot data
sequence embedded in the data block enables the receiver
to estimate the channel. Since this pilot sequence bears no
information, the waste of bandwidth caused by pilot symbols
should be kept as low as possible. It has been shown that the
quality of channel estimates can be improved dramatically by
feeding back the decided data as pseudo reference signal for
the channel estimation. On the other hand the data detection
becomes more reliable using the improved channel estimates.
Thus, iterative equalizer structures alternating between data
detection and channel estimation promise good performance
gains, since the number of required pilot symbols can be
decreased and thus more bandwidth can be utilized to transmit
information.

A lot of work has been done in this field so far, e.g.
Feder and Catipovic have dealt with iterative joint channel
and data estimation for finite impulse response (FIR) channels
[1] and Kaleh and Valet have established the expectation-
maximization-algorithm for this task [2]. Beside block by
block processing, sequential methods have become more and
more popular. In [3], [4] trellis based implementations for
iterative joint maximum likelihood (JML) approximation were
presented. However, in the face of bad initialization most
deterministic methods suffer from insufficient convergence
properties.

Recently, the old idea of Monte Carlo sampling has been
revitalized, e.g. in [5]. This class of approaches has its origin in
the early fifties by the well known metropolis algorithm [6]. A

comprehensive survey of Monte Carlo (MC) methods is given
in [7]. One of the most popular block by block algorithms is
the Gibbs sampler [8], which was first introduced to unknown
FIR channel equalization in [9]. As shown in [7] the Gibbs
sampler provides almost global convergence. Also sequential
Monte Carlo sampling was applied to wireless communication
problems, e.g [10], [11].

The contribution of this paper is to combine deterministic
and MC methods and to compare these iterative structures
with respect to the quality of the initial guess. We will focus
on block-wise signal processing in order to illustrate the
general problems occurring in the context of iterative joint
maximum likelihood approximation. Throughout this paper,
we will assume that an initial channel estimate of low quality
is available at the receiver without specifying how to obtain
it, e.g. pilot-based or completely blind.

In Section II we introduce the system model. On basis of the
joint maximum likelihood criterion, a suboptimal deterministic
iterative approach is derived and the EM-algorithm is briefly
explained in Section III. In Section IV the Gibbs-sampler
is explained and some combinations of deterministic and
Markov chain Monte Carlo (MCMC) algorithms are defined.
A comparison on basis of numerical results is presented in
Section V and the paper is concluded in Section VI.

II. SYSTEM MODEL

We consider a block transmission of K M -ary PSK symbols
s = [s(1), · · · , s(K)]T over a frequency selective channel of
order L. We assume that the interval between two consecutive
data blocks is filled by a sufficiently large number of zero
symbols, such that no inter symbol interference between two
consecutive blocks occurs. Collecting K + L samples in the
vector r at symbol rate, the channel output is given by

r = Sh + n, (1)

where S is the (L+K×L+1) convolution matrix of s defined
by

[S]ν,µ =

{

s(ν − µ + 1) : 0 ≤ ν − µ < K

0 : else
. (2)

The vector h = [h0, · · · , hL]T contains the channel gains
hl ∈ C1 including transmit and receive filter and n =

1C : set of complex numbers



[n(1), · · · , n(L + K)]T is white gaussian noise with power
σ2. Due to the finite symbol alphabet, each transmit vector s

is an element of the set A = {s1, · · · , sMK} of all possible
symbol sequences.

III. DETERMINISTIC JOINT MAXIMUM LIKELIHOOD

APPROXIMATION

In view of blind data detection and channel estimation the
joint maximum likelihood (JML) criterion may deliver jointly
suitable estimates of channel and data [1]. The JML solution
is given by

(ŝ, ĥ) = arg max
s∈A,h∈CL+1

p(r|s,h)

= arg min
s∈A,h∈CL+1

‖r − Sh‖2, (3)

where

p(r|s,h) =
1

(σπ)K+L
exp

(

−‖r − Sh‖2/σ2
)

(4)

is the probability of receiving r under the condition, s was
transmitted over the channel h. Please note that (3) has no
unique solution due to an unknown complex rotation factor
of h which yields a phase ambiguity. Therefore, throughout
this paper we assumed differential encoding. However, accom-
plishing the JML estimation is not practicable in real appli-
cations due to the high computational effort of the exhaustive
search over MK possibilities of s.

A. Iterative Joint Maximum Likelihood Approximation (IJML)

Since the maximization of the probability density function
(4) can be simplified keeping either s or h fixed, a natural
way to approximate JML solution is to estimate iteratively the
channel and the data. Let i be an iteration counter. Then the
ML channel estimation under the assumption that ŝ(i) was the
transmitted data sequence can be performed by maximizing
the conditional likelihood

L(h|ŝ(i)) ∝ exp(−‖r − Ŝ(i)h‖
2/σ2). (5)

and calculating

ĥ(i) = arg max
h∈CL+1

L(h|ŝ(i))

= arg min
h∈CL+1

‖r − Ŝ(i)h‖
2. (6)

The ML data detector maximizes the conditional likelihood

L(s|ĥ(i)) ∝ exp(−‖r − Sĥ(i)‖2/σ2). (7)

by calculating

ŝ(i+1) = arg max
s∈A

L(s|ĥ(i))

= arg min
s∈A

‖r − Sĥ(i)‖2. (8)

A solution for (8) can be obtained by the well known Viterbi
algorithm [12], whereas

ĥ(i) =
(

ŜH
(i)Ŝ(i)

)−1

ŜH
(i)r (9)

is the maximum likelihood channel estimator with covariance

C
(i)
hh = E{(h − ĥ(i))(h − ĥ(i))H |ŝ(i)}

= σ2
(

ŜH
(i)Ŝ(i)

)−1

. (10)

B. Discussion of the IJML

The algorithm can not be called totally blind, since in the
first step an initial channel estimate is required in order to start
the iterative procedure. The suggested procedure is suboptimal
in the sense that only a small part of the set A will be covered.
As shown in the example of Fig. 1 the iterative procedure can
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Fig. 1. Iterative Joint Maximum Likelihood Approximation as Markov Chain

be interpreted as Markov chain, where the states represent the
instantaneous data estimates at iteration step i according to
A = {s1, s2, s3, s4} and the state transitions are given by

L(s|ŝ(i)) ∝ e(−‖r−S(Ŝ(i)Ŝ
H

(i))
−1

Ŝ
H

(i)r‖
2/σ2). (11)

Maximizing L(s|ŝ(i)) is identical to successively calculating
(6) and (8). The algorithm converges, when the likelihood be-
comes maximum for L(sk|ŝ

(i) = sk). The obtained maximum
does not need to coincide inevitably with the global maximum
of (3). The performance of the algorithm depends on the
quality of the initial channel estimate. Starting with the initial
channel estimate ĥ(0) the solid path in Fig. 1 represents the
maximum of (11) at each iteration step. In order to illustrate
the problem of trapping into a local minimum assume that the
metric L(s1|s1) denoted by the dashed line between iteration
3 and 4 is larger than L(s3|s3) but also L(s1|s3) is lower than
L(s3|s3) as depicted by the dashed and solid line between
iteration 3 and 4. Even if L(s1|s3) is very close to L(s3|s3)
the algorithm does not converge to the global maximum.

A hint on the instantaneous channel estimation quality of
the i-th iteration step can be obtained by the covariance matrix
given in (10). However, the explained algorithm does not take
this quality into account.

C. EM Algorithm

In this section we give a brief explanation of the EM-
algorithm which is also an iterative procedure and is a standard
tool for the missing data problem in statistical mathematics. It
was firstly applied to the joint data and channel estimation of
FIR channels by Kaleh and Valet [2]. One of the most useful
features of the EM-algorithm is that the desired likelihood is
increased at each iteration step. Thus, it can be guaranteed that
at least a local maximum is reached.



The target of the EM-algorithm is to maximize the likeli-
hood p(r|h) with respect to h by

ĥ = arg max
h

p(r|h) (12)

Since it is very difficult to solve this expression, the hidden
variable s is introduced by

p(r|h) =
∑

s

p(r, s|h). (13)

The EM-approach consists of an expectation step with respect
to the hidden variable s and a maximization step with respect
of h, which are given by

E-step: U(h|ĥ(i)) = E{log p(r, s|h)|ĥ(i)} (14)

and

M-step: ĥ(i+1) = arg max
h

U(h|ĥ(i)). (15)

Since without the a-priori information p(s) the density
p(r, s|h) is proportional to p(r|h, s), the E-step can be ex-
pressed as

U(h|ĥ(i)) = E{log p(h|s, r)|ĥ(i)}

= E{‖r − Sĥ(i)‖2/σ2}

= ‖r‖2 − 2<(rH Ŝĥ(i))

+(ĥ(i))HC(i)
ss ĥ(i), (16)

where ˆS(i) = E{S|ĥ(i)} as well as C
(i)
ss = E{SHS|ĥ(i)} can

be obtained by an forward backward algorithm similarly to the
BCJR-algorithm. Note that the estimate Ŝ(i) consists of soft
values. For a detailed derivation, see [2]. The solution of the
M-step (15) is given by

ĥ(i+1) =
(

C(i)
ss

)−1

Ŝ(i)r. (17)

In a sense the estimation of s is a byproduct of the EM-
algorithm. Therefore, this approach seems at the first view
a little bit astonishing, since usually the receiver is more
interested to obtain an estimate of the data s than to know the
channel impulse response h. Thus, it could be more natural
to treat h as the hidden variable. However, experience has
shown that this version outperforms the complementary EM-
approach. In contrast to IJML this approach take into account
the variance of the current data estimates in terms of C

(i)
ss .

Similarly as illustrated in section III-B for IJML, the EM-
algorithm may trap into a local maximum.

IV. MARKOV CHAIN MONTE CARLO (MCMC)

A way to achieve global convergence may be obtained by
the so called Markov chain Monte Carlo approaches. In the
following we will describe the Gibbs-sampler [8] as one of the
most popular MCMC schemes, which is the basis for the MC
related methods examined in this paper. As well as before the
Gibbs-sampler is an iterative procedure alternating between
data detection and channel estimation. But in contrast to de-
terministic algorithms as IJML neither the channel estimation

nor the data detection is deterministic in the sense that the
Gibbs-sampler does not deliver an unique output for a certain
input. The task of the Gibbs-sampler is to generate a sequence
of random numbers according to an appropriate pdf. On the
basis of this random numbers the desired estimator output
can be approximated. The technical realization of random
number generation is out of the range of this paper (e.g.
pseudo random numbers by m-sequences, etc. [7]). We will
focus on the derivation of the pdf’s which corresponds to
the required random numbers. In order to distinguish between
deterministic estimates and random samples, throughout the
paper all random samples are labelled by a bar and all
estimates are labelled by a hat.

In our case the objective is to approximate the conditional
expectation

ŝ = E{s|r} =
∑

s∈A

s p(s|r). (18)

Please note, that in contrast to the output of the IJML ŝ 6∈ A
has soft values. Due to the large number of members of the set
A the analytical calculation of (18) is not tractable. The key
idea is to draw I random samples s̄(i) from p(s|r) in order to
approximate the expectation by

ŝ ≈
1

I

I
∑

i=1

s̄(i). (19)

For sufficiently smooth probability density functions (pdf) a
quite good approximation of p(s|r) can be obtained by a
small number of random samples. Since it is very difficult
to obtain p(s|r) analytically, it would be desirable to perform
the sampling procedure without having to calculate the exact
density. To this end, p(s|r) can be expressed as a function
dependent on the conditional pdf p(h|r) by making use of the
marginalization

p(s|r) =

∫

p(s|h, r)p(h|r)dh. (20)

Due to the Bayesian law

p(s|h, r) =
p(r|s,h)p(s)

p(r|h)
(21)

the relation
p(s|h, r) ∝ p(r|s,h) (22)

holds, if h is given and no a-priori information p(s) exists.
As shown in (4) the density p(r|s,h) can be easily deter-
mined. Thus, assuming that several random samples h̄(i) for
i = 1, · · · , I according p(h|r) are available p(s|r) can be
approximated in a similar way as illustrated in (18) and (19).

In order to obtain the desired random variables h̄ the density
p(h|r) is required. Similarly as for p(s|r), this pdf can be
expressed as a function depending on the pdf p(s|r) by

p(h|r) =
∑

s∈A

p(h|s, r)p(s|r). (23)

Again, due to

p(h|s, r) =
p(r|s,h)p(h)

p(r|s)
(24)



the relation
p(h|s, r) ∝ p(r|s,h) (25)

holds, if s is given and no a-priori information p(s) exists.
Therefore, p(h|r) can be approximated by a sufficient large
number of random sample s̄(i) for i = 1, · · · , I according to
p(s|r).

Obviously, p(s|r) and p(h|r) can be approximated by a set
of random variables h̄(i) and s̄(i) and on the other hand these
densities are required to generate the desired random variable.
Unfortunately, neither the receiver knows the desired densities
nor has the desired random variables. Therefore, the Gibbs-
sampler approximates the desired pdf’s p(s|r) and p(h|r) by
p(r|h̄(i), s) and p(r|s̄(i), s). It generates iteratively random
samples starting by an initial guess ĥ(0). Therefore, the both
steps

s̄(i+1) ∼ p(r|h̄(i), s) (26)

and
h̄(i) ∼ p(r|s̄(i), s) (27)

are repeated alternating, where a detailed description of (26)
and (27) is given in section IV-D and IV-C, respectively.

A. Convergence properties

The transition probability from n-th to the m-th member of
the set A is given by

an,m = p(sn|sm, r) =

∫

p(sn|h, s)p(h|sm, s)dh. (28)

Due to the fact, that (for given r) any s̄(i+1) only depends on
s̄(i) from the previous iteration step, the sampling procedure
can be modelled as stationary Markov chain, where the term
”stationary” means that the transition probabilities from state
n to state m does not change during the iterations (Fig. 2).
Defining the (ML × ML) transition matrix [A]m,n = am,n,

( )i
s

( 1)i
h

+

( 1)i+
s

( )i
h

( )( | , )i
p s s r

Fig. 2. Gibbs sampler

the joint transition probabilities of i subsequent iteration steps
are given by Ai. Let

A = VΛV−1 (29)

be the eigen decomposition of A, where Λ =
diag(λ1, · · · , λML) are the eigenvalues of A with
|λ1| > · · · > |λmL | and V = [v1, · · · ,vML ] the
corresponding eigenvectors. The maximum eigenvalue is
always λ1 = 1 [7]. Then the eigen decomposition of Ai is
given by

Ai = VΛiV−1, (30)

where Λi = diag(λi
1, · · · , λi

ML). Since except of λ1 all
eigenvalues are smaller than one, for a large i the values

λi
2, · · · , λi

mL tend to zero. Therefore, for a sufficiently large
number of iteration steps i the current state of the Markov
chain becomes independent from the initial value. In this
case the probability of meeting a certain state is given by
the density p(s|r), which is equivalent to the eigenvector v1

corresponding to the maximal eigenvalue λ1. In other words
for sufficiently large i we will obtain random samples of s̄(i)

and h̄(i) according to the conditional densities (20) and (23).
As it can be seen from (30), the convergence speed of the
Gibbs-sampler depends on the ratio of the maximum to the
subsequent eigenvalue λ1/λ2 and is geometric.

Since performing (26) and (27) requires a current estimate
of the noise power σ̂2

(i), in the next section a noise power
estimator is presented.

B. Noise power estimation

Given s̄(i) and h̄(i) the maximum likelihood estimator for
σ̂2 is given by

σ̂2
(i) = arg max

σ2
p(r|σ2, s̄(i), h̄(i))

= arg min
σ2

[

(K + L) log(πσ2)

+1/σ2‖r − S̄(i)h̄
(i)‖2

]

. (31)

Replacing h̄(i) in (31) by the r.h.s of (9), the solution can
be calculated by differentiating the resulting expression with
respect to σ2:

σ̂2
(i) =

1

K + L
rHQ(i)r (32)

with

Q(i) =

(

I − S̄(i)

(

S̄H
(i)s̄(i)

)−1

S̄H
(i)

)

. (33)

Obviously, Q(i) represents an orthogonal projection matrix
with respect to the hypothetic signal space S(i) spanned by the
column vectors of S̄(i). Hence, σ̂2

(i) corresponds to the squared
distance between the observation r and the point inside S(i),
which is nearest to r. However, the part of the noise inside the
signal space is neglected by the proposed estimator. Therefore,
even if s̄(i) corresponds to the true data the noise power will
be underestimated, resulting in a biased estimator. In order
to compensate this bias, the result can be multiplied with a
correction factor φ = (K + L)/K, which represents the ratio
between the dimensions of the observation space of r and the
noise space complementary to the signal space N(i) ⊥ S(i).

Due to the fact that in most cases σ̂2
(i) corresponding to a

good guess s̄(i) is lower than for a bad guess, the current noise
power estimate can be interpreted as a measure for the quality
of the current guess of s̄(i). As the variance of the conditional
pdf’s corresponding to data and channel are closely related
to σ̂2

(i), the estimated noise power plays an important role in
Monte Carlo sampling, whereas the ML estimators of data
and channel used in IJML do not need to have this knowledge.
Therefore, this value can be understood as a coefficient, which
weights the strength of the randomness in MCMC.



C. Random sampling of the channel impulse response

The conditional pdf p(h|s̄(i), r) ∝ p(r|s̄(i),h) is gaussian
and completely determined by its mean ĥ as given in (9) and
its covariance matrix C

(i)
hh as given in (10). Thus, a sample

of the channel impulse response according to (27) can be
obtained by

h̄(i) = ĥ(i) +
(

C
(i)
hh

)1/2

η, (34)

where η is the output of a white gaussian noise generator with
E{ηη

H} = I. Since C
(i)
hh is always positive semidefinite, its

root can be obtained by the Cholesky factorization. Please note
that in order to calculate C

(i)
hh an estimate of the noise power

is needed.

D. Random sampling of the data sequence

We present now forward backward sampling method, which
was originally derived from [13].

A finite state machine representation of the communication
link is given by

r(k) = s(k)h0 + zT
k h̃ + n(k), (35)

where N = ML is the number of states according to all
possible inputs zk = [s(k −L), · · · , s(k − 1)]T ∈ Z and h̃ =
[h1, · · · , hL] is the reduced channel vector. Please note that
given r and h any state zk only depends on the neighboring
states zk−1 and zk+1. Therefore, the conditional probability
distribution (20) can be factorized by the chain rule as

p(s|h, r) = p(zK+L|h, r)p(zK+L−1|zK+L,h, r)

· · · p(z0|z1,h, r)

= p(zK+L|h, r)
K+L−1

∏

k=0

p(zk|zk+1,h, r).(36)

In order to calculate the last chain link p(zK+L|h, r), we
define

αk(ζ) = p(zk = ζ, r≤k|h) (37)

and
γk(ζ, ζ ′) = p(zk = ζ, r(k)|zk−1 = ζ ′,h), (38)

where r≤k = [r(1), · · · , r(k)] is the reduced observation
vector and ζ, ζ ′ ∈ Z . Starting from α0(ζ), the subsequent
values of αk(ζ) for k = 1, · · · ,K + L can be calculated by
applying the forward update rule

αk(ζ) =
∑

ζ′∈Z

γk(ζ, ζ ′)αk−1(ζ
′). (39)

After updating (39) k = K + L times we obtain αK+L(ζ) =
p(zK+L = ζ, r|h). The chain link p(zK+L|h, r) can be
obtained by normalizing

p(zK+L = ζ|h, r) =
αK+L(ζ)

∑

ζ′

αK+L(ζ ′)
. (40)

Thus, the state variable zK+L can be drawn from the distribu-
tion z̄K+L ∼ p(zK+L|h, r). Taking into account the current

guess the next chain link of (36) can be obtained by the
backward updating rule

p(zk = ζ|z̄k+1,h, r) =
γk+1(z̄k+1, ζ, )αk(ζ)

∑

ζ

γk+1(z̄k+1, ζ)αk(ζ)
. (41)

The subsequent state variable is drawn from

zk ∼ p(zk|z̄k+1,h, r). (42)

Repeating these two steps up to k = 0 we will obtain
s̄(i) = f(z̄0, · · · , z̄K+L) as a random sample according to
p(s|h̄(i), r).

In order to avoid floating point overflow, the calculations
of the values α and γ are usually realized in the logarithmic
scale. Recall that the forward loop of the presented method is
identical to the forward loop of the BCJR-algorithm, whereas
the backward loop is similar to the backward loop of the
Viterbi algorithm. The computational effort of the presented
sampler compared to the BCJR-algorithm is approximately cut
in half.

E. Averaging

The random character of the instantaneous data estimates
s̄(i) may result in bad estimates. Therefore, the estimates
should be averaged over several iterations. After running the
iterations I samples of the channel h̄(i) and data s̄(i) are
available at the receiver. Due to the forgetfulness of Markov
chains later samples are more reliable than the former. We can
substantially distinguish between two averaging methods:

The straight forward (SF) approach is

ŝ =
1

I

I
∑

i=1

s̄(i) (43)

and an averaging scheme which is often referred as Rao-
Blackwellization (RB) is given by

ŝ =
1

I

I
∑

i=1

E{s|h̄(i), r}. (44)

It can be shown (e.g. [7]) that Rao-Blackwellization has always
the lower variance. The calculation of E{s|h̄(i), r} can be
performed by the well known BCJR algorithm [14], which is
also a forward backward method and can be combined with
the presented sampler. However, the computational complexity
is at least twice as high as in the first averaging scheme.

F. Combined deterministic and MC structures

All presented iterative block by block equalizers can be
described as in Tab. I.

Calling the channel update according to (6) as deterministic
method (det.) and according to (27) as Monte Carlo (MC)
method, and similarly calling the data update according to
(8) as deterministic method and according to (26) as Monte
Carlo methods, we have examined several combinations of
these parts as shown in Tab. II.



TABLE I

ITERATIVE EQUALIZER

init channel by inital guess ĥ(0)

for i= 1:I
• update the data estimates s(i)

• (if necessary) update the noise power estimates (section IV-B)
• update the channel estimates h(i)

end
average over s(i) (if necessary)

TABLE II

COMBINED DETERMINISTIC AND MC APPROACHES

termed as channel data averaging comp. complexity
IJML det. det. none low
EM max. exp. none high
MCMCv1 MC det. SF middle
MCMCv2 det. MC RB middle - high
Gibbs MC MC RB middle - high

V. NUMERICAL RESULTS

Fig. 3(a) and 3(b) compares the BER vs. SNR of all schemes
presented in Tab. II after 20 iterations for D-BSK modulated
signals, where the normalized squared distance between true
channel and initial channel estimate

‖h − h̄(0)‖2/‖h‖2 (45)

was 0 dB. The complex channel gain were independently
complex gaussian distributed and the power of the overall
impulse response was normalized to hHh = 1.

Since the problem is better conditioned for a large block-
length, the BER performance illustrated in 3(a) is generally
better than in 3(a). However, it can be observed that the
difference between deterministic and Monte Carlo approaches
becomes smaller in the case of increasing blocklength.

Fig. 3(a) shows that in the high SNR region all MC schemes
significantly outperform the IJML, whereby the best results
were delivered by the Gibbs-Sampler. At low SNR the BER
of IJML is slightly better. The results concerning the low SNR
region are astonishing since the Gibbs sampler theoretically
always converge to maximum likelihood. However, concerning
the BER the joint maximum likelihood might be not the best
criterion in the presence of a-prioiri channel state information,
which is inherently included by the initial channel guess.

In Fig. 4 the normalized mean squared error (NMSE)
defined as in (45) between the true and the estimated channel
after 20 iterations is shown. It can be seen that all methods
does not significantly differ.

Figure 5(a) shows the convergence behavior of the presented
methods at 16 dB SNR. After 4 iterations IJML converges
without any further improvements, whereas even after 20
iterations the performances of all MC schemes slightly im-
prove. MCMCv1 and the Gibbs sampler have the slowest
convergence speed but intersect MCMCv2 after approximately
8 iterations, whereas MCMCv2 is as fast as IJML and outper-
forms IJML after 4 iterations. The EM-algorithm converges
faster than the Gibbs-sampler, but will be outperformed after
approximately 15 iterations.
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Fig. 4. NMSE vs. SNR with blocklength 10

In Figure 5(b) the average of estimated noise versus iteration
steps is plotted for the same configuration as in Fig. 5(a). It can
be seen that the current estimate of noise power is an indicator
for the BER performance. Please note, that assuming the signal
power |s(k)|2 = 1 the noise power estimation is also suitable
to estimate the SNR by SNR = 1/σ̂2. Thus, the noise power
is slightly underestimated.

Finally, in Fig. V the BER versus the NMSE of the initial
channel estimates is plotted at 8 dB SNR. Although, the
MC related methods promise global convergence, their per-
formance depends strongly on the quality of the initialization.
Probably, in the bad initialized cases the number of considered
iterations are not sufficient. This problem becomes worse with
increasing blocklength. Therefore, the blocklength should be
kept very small. A possibility for large bloncklength may
be obtained by applying sequentiell joint data and channel
estimation methods.

VI. CONCLUSION

In comparison to the deterministic channel estimator and
data detection schemes the MCMC procedures seem to lead
to a degradation of the overall performance due to the artificial
deterioration of the estimates. On the other hand IJML neither
makes use of the estimation variance of ĥ nor utilizes the pdf
of s. In all presented MC-methods the strength of randomness
is weighted by an estimate of the noise power, which can be
interpreted as a measure of the quality of the current data
guess. As it was shown by the numerical results all presented
MC-schemes outperform IJML after few iterations. By com-
bining MC and deterministic methods, we can smartly trade
off between computational complexity, convergence speed und
overall performance. A deterministic alternative to IJML is the
EM-algorithm, which suffer from high computational effort.
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