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Abstract

Hands free operation of communication devices (mobile
phones, navigation systems etc.) in cars is becoming ob-
liged to greater extents. A major task for such systems is
that of speech recognition, for instance handling a navi-
gation system via voice commands only. Algorithms for
speaker identification may be used to provide speaker
dependent speech recognition systems with the necessary
a-priori information. Furthermore, the retrieved informa-
tion of who is speaking (and operating the car) may be
exploited to enable other systems (radio etc.) adapting
to the preferences of the driver.

The performance of text-independent speaker identifica-
tion under the acoustic circumstances occuring in a car
is evaluated by the recognition rate of the system com-
paring different possibilities of multi-channel signal pro-
cessing.

Introduction
Text-independent speaker identification using Gaussian
Mixture Models was introduced by Reynolds et al. [1, 2].
In this work we want to evaluate the performance of spea-
ker identification under the acoustic degradations occu-
ring in a car environment: Reverberation and aditive noi-
se. For different test-cases we try to improve the recogni-
tion rate of the system by applying multi-channel speech
processing [3]. The results will give an indication to which
extent speaker identification is possible under the given
circumstances.

Speaker Identification

Feature Extraction

To extract representative features from one speech se-
quence, the discrete-time signal s(k) is segmented into
frames of R samples with frame index τ = 1..T . The
overlapping of the frames is R/2 samples. Only frames of
speech activity were taken into account by decision from
a voice activity detection [4]. For each frame the Mel-
Frequency Coefficients (MFCC) are extracted in HTK-
format [5] giving a feature-vector fτ = (fτ,1...fτ,D)T with
D dimensions. For the need of channel-compensation [1]

the overall bias of the feature-vectors b = 1

T

∑T

τ=1
fτ is

removed from all vectors yielding the compensated featu-
res f̂τ = fτ−b. In order to consider temporal information
the Delta-coefficients ∆f̂τ = f̂τ − f̂τ−1 are included in the
feature vectors by

∆f̂τ =
[

f̂τ ∆f̂τ

]

. (1)

The matrix formed by all feature-vectors

∆F̂Train =
(

∆f̂1, ..,∆f̂T

)T

εRT×2D (2)

is decomposed by the singular value decomposition
(SVD) ∆F̂ = USVT giving V ε R

D×D as the principal
axes of the features which they are projected on

∆F
p =∆F̂ · V . (3)

Gaussian Mixture Models

For each speaker with index q = 1..Q, a gaussian mixture
model defined by its parameter set λq = {pi,µi,Cff,i}
is computed via the EM-algorithm [6]. Here, µi is the
2D-dimensional mean-vector, Cff,i the 2D × 2D cova-
riance matrix and pi the weighting factors of the M = 40
mixtures (i = 1..M) satisfying the condition

∑M
pi = 1.

For closed-set classification of a test-sequence, its features
are compared to the Q different models. That model λq̂

is chosen as the actual speaker model , for which the
logarithm of the probability for the feature-vectors ∆f pτ
given the model takes its maximum [1].

q̂ = arg max
1≤q≤Q

T
∑

τ=1

log p (∆fpτ |λq) . (4)

Test Cases
In our investigation we considered a linear array of four
microphones with a spacing of d = 6cm. The acoustic
conditions considered were reveberation caused by the
car-cabin and additive noise. The impulse responses for
reverberating the clean test-sequences were generated by
simulation [7], with a reverberation time τ60 = 50ms. The
noise signals were recorded using an array of equivalent
spacing in a medium-sized vehicle. Altogether, four test
cases were considered

1. Clean test signals

2. Reverberation only

3. Reverberation and noise from idle engine

4. Reverberation and noise at 50km/h

Signal Processing
All noisy test sequences were pre-processed by a
highpass-filter with a cut-off frequency of 50kHz. This
was done due to the strong lowpass-characteristic of the
noise signals occuring in an automotive environment.



One alternative of multi-channel systems was the
Delay&Sum-Beamformer (D&S). The beamformer was
also extended by a different post-filters, including the
weighting rule by Simmer WSim [8, 3] to achieve higher
noise reduction. Another multi-channel system conside-
red was the Superdirective-Beamformer (SD). Also for
this beamformer a postfilter WSD was used as an ex-
tension as described in [8, 3]. For reasons of comparison
the single-channel weighting rule by Ephraim and Malah
(E&M) [9] was applied to the noisy signals.

Results
The algorithms were tested on speech sequences from the
KING database [10], using 90 seconds for training and 10
seconds for testing. There were 26 male speakers with an
average of 15 test-sequences per speaker. Two kinds of
tests were performed per test-sequence:

• Identfying a speaker out of all 26 speakers

• Identfying a speaker out of a group of 4 speakers

Using clean speech for testing we obtained a recogniti-
on rate of 99.2%. Under the influence of reverberation
only we achieved 93% using only a single microphone
(mic1), 96% for the Delay&Sum-Beamformer and 96.4%
for a Superdirective-Beamformer, while no postfilters we-
re applied. Depicted in Figure 1 are the recognition rates
for the different of signal-processing under conditions of
test-case 3 and 4. Figure 2
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Abbildung 1: Recognition rates for test-cases 3 and 4 for

identification out of a group of 26 speakers
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Abbildung 2: Recognition rates for test-cases 3 and 4 for

identification out of a group of 4 speakers
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