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ABSTRACT
Devices for communication and information utilised by car drivers are facing two essential requirements:
hands-free operation via distant microphones but also robustness against different noises depending on car
speed etc. Automatic speaker identification can be utilized within such devices to either supply speech
recognition systems with so called apriori information to achieve higher recognition rates or even to enable
applications such as heating systems to adjust to the preferences of the driver. Thus identifying the driver
from a predefined group of possible system users may be a task for future applications. The aim in this
work is to investigate to which extent multi-channel noise reduction systems are suitable for improving
the performance of speaker identification algorithms under different acoustic conditions in an automotive
environment.

1. INTRODUCTION
Different devices such as mobile phones or naviga-

tion systems may be installed permanently or tem-
porarily in the cockpit of a car. Instead of operating
them manually it is the task to allow total hands-
free control in order to minimize the distraction of
the driver.

Applications of these devices include the aim of
speech recognition e.g. in order to make a certain re-
quest to the navigation system. The information re-

trieved from automatic speaker identification can be
exploited to support speaker dependent solutions for
speech recognition. Moreover, other systems such as
heating, air conditioning or radio may be adapted
to the preferences of the driver in the case that is
known who is conducting the vehicle. Thus, auto-
matic speaker recognition in the sense of identifying
an operator from a closed set of users may be con-
sidered a problem of the ambition to realize the task
of voice controled systems.
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Text-independent speaker identification via
Gaussian Mixture Models (GMM) has been
introduced by Reynolds et al. [1, 2]. During
training, a statistical model is computed for each
speaker based on features extracted from a speech
sequence. During testing the speaker shall be
identified by a shorter test-sequence that was not
included in the training sequence. The performance
can be investigated based on clean speech signals
provided by a database [3].

In a car cabin two kinds of acoustic degradation oc-
cur during the potential test scenario: Firstly, re-
verberation caused by reflections inside the cabin
and furthermore noises emerging from tire-friction,
airstream or the engine. This results in a reduced
recognition rate. Therefore, we investigate in this
work to which extent multi-channel noise reduction
systems are capable of improving the recognition
rate.

1.1. Outline
This paper is organized as follows: In Section 2 we
explain the idea of text-independent speaker identi-
fication via gaussian mixture models including the
aspect of feature extraction. Performance limits due
to chosen parameters are shown in terms of recogni-
tion rates based on clean speech signals only. Section
3 specifies the set-up for the acoustic scenario during
the test case in a car cabin and defines the different
test-cases. The approaches of multi-channel systems
for noise reduction considered in this work are ex-
plained in Section 4. Finally, the performance of
the different systems for the test-cases is outlined in
Section 5. Conclusions are drawn in Section 6.

2. SPEAKER IDENTIFICATION

Gaussian mixture models (GMM) are used to build
stochastic models of the features extracted from a
speech sequence of a specific speaker. This has been
introduced by Reynolds [2]. Here, we review the
approach and point out aspects of parameter choice.

2.1. Feature Extraction
The discrete-time signal s(k), sampled at a sampling
frequeny fs = 8kHz, is segmented into frames of
R = 256 samples with a frame index τ = 1..T , where
T is the number of all frames. Adjacent frames over-
lap by R/2 = 128. For each frame a feature-vector

fτ = (fτ,1...fτ,D)T of D dimensions is extracted. All
feature-vectors of one speech sequence form the set
F = (f1, .., fT )T.

The extracted features are the Mel Frequency Cep-
stral Coefficients [2, 4], widely used for recogni-
tion tasks in speech processing. The exact imple-
mentation was done in HTK format [4] leading at
fs = 8kHz to D = 12 coefficients per vector.

2.2. Gaussian Mixture Models
The probability density function of an observed

feature-vector fτ given by a single gaussian mixture
with index i is

bi(fτ ) =
1

(2π)D/2 · |Cff |1/2
·

exp
[
−1

2
(fτ − µi)

T C−1
ff,i (fτ − µi)

]
(1)

where µi is the D-dimensional mean-vector and
Cff,i the D × D covariance matrix. Here, we re-
strict the model to have only diagonal covariance
matrices in order to reduce computational complex-
ity. For each mixture i = 1..M a weighting factor pi

is given satisfying the condition
∑M

pi = 1. The set
of parameters for all M mixtures are summarized as
λ = {pi, µi,Cff,i}. Finally, the probability of an
observation fτ given by the model λ is

p (fτ |λ) =
M∑
i=1

pi. · bi(fτ ) (2)

Assuming independence of the observations the over-
all probability of a set of observed feature vectors
from one speech sequence fitting a model q can be
computed as

p (F|λq) =
T∏

τ=1

p (fτ |λq) (3)

or in the logarithmic scale as

log p (F|λq) =
T∑

τ=1

log p (fτ .|λq) (4)

2.2.1. Model Estimation from Training Data
Having the set of observations FTrain = (f1, .., fT )T

from a training sequence of speaker q at hand the
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parameter set λq has to be determined such that
the log-likelihood log [p (FTrain|λq)] is maximized.
For this purpose the expectation-maximization-
algorithm (EM) is applied [2, 5]. Starting from an
initial set of parameters λ the algorithm performs an
iteration to find a new set of parameters λ̄ for which

log p
(
F|λ̄) ≥ log p (F|λ) (5)

is known to be guaranteed.

Repeating the iteration of the EM-algorithm will
lead to an improved or equivalent model. The al-
gorithm is known to converge to a local maximum
of log p

(
F|λ̄)

. Since the number of iterations W ,
needed for convergence of the model, strongly de-
pends on the training data, we refrain from fixing
W to a certain value but use a different criterion
instead. Let

Θ = |log p
(
F|λ̄w+1

)
/log p

(
F|λ̄w

) − 1| (6)

indicate the relative increase of the logarithmic prob-
ability gained from iteration step w to w + 1, then
we terminate the algorithm if Θ < 1e − 6 [6]. The
initialization of the model parameters is known to
be an uncrucial aspect [1]. For the M mean-vectors
µi we draw M different observations fτ from the
training data at random. The diagonal entries of all
coariance matrices Cff,i are initialized by the vari-
ance values σ2

1..D of the training data. The mixture
weights are set to pi = 1/M . The remaining ques-
tion of choosing the order of the model M shall be
addressed in Section 2.3.

2.2.2. Classification of Test-Data
From a test-sequence the set of feature vectors

FTest = (f1, .., fT )T is extracted as described in 2.1.
To perform a closed-set classification of the test-data
that model of speaker q̂ maximizing the probability
of the observations FTest fitting the model λq̂ is cho-
sen [1]

q̂ = arg max
1≤q≤Q

T∑
τ=1

log p
(
fτ |λ̄q

)
(7)

identifying speaker number q̂ as the one to have spo-
ken the test sequence.

2.3. Performance on Clean Speech Data
The performance of the MFCC-features in conjunc-
tion with GMMs is first evaluated on clean speech

data from the KING database [3]. The database pro-
vides speech samples from 51 male speakers out of
which we choose those 26 that were recorded during
10 sessions in San Diego. The speech samples from
the speakers recorded in New Jersey are known to
suffer from an insufficient SNR level and are there-
fore not considered.

The material is divided into 90 seconds of training
sequences for each speaker and the rest for test se-
quences of 10 seconds length. In total there are 410
test sequences giving an approximate average of 16
test sequences per speaker.

For feature extraction from the speech sequences
only frames of speech acitivity are considered and
pause frames are neglected. The necessary voice ac-
tivity detection (VAD) [7] has been performed in a
so called batch-mode: the decision of the VAD was
performed based on the knowledge of the whole ut-
terance.

During the simulations the model order of the
GMMs was varied from M = 5 up to M = 50. The
result can be seen in Figure 1 as the solid black line
on which we want to focus at first.
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Figure 1: Recognition rates for different feature
types and varied model order M

Starting from M = 5 the results clearly show with
increasing model order higher recognition rates and
therefore also indicate more accurate models. But
the results also show that it is not possible to at-
tain perfect recognition results by just increasing the
model order beyond a certain value. At first sight it
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seems to be sufficient to assume M = 40 mixtures
for the GMMs.

2.4. Variants of MFCC Features
In order to yield higher recognition rates further

variants of MFCC features that can be found in [1]
are considered.

The first one is the attempt of including tempo-
ral information in the features by the so called
Δ-coefficients. For the frame τ the vector of Δ-
coefficients is

Δfτ = fτ − fτ−1. (8)

This vector is concatenated with the initial feature-
vector fτ to form the new feature-vector

Δfτ = [ fτ Δfτ ] . (9)

It shall be noted that the new feature vectors now
have 2D dimensions, demanding higher computa-
tional complexity. The results for such feature-
vectors are plotted as the dash-dotted line in Figure
1. Apparently appending the temporal information
in form of the Δ-coefficients leads to improved sta-
tistical models indicated by the higher recognition
rates.

The next variant is that of removing the bias from
the feature-vectors caused by the acoustic channel
between the speaker and the microphone. As it has
been shown by Reynolds and Rose [1], the convo-
lutive component in the time domain caused by an
acoustic channel results in an additive component in
the cepstral domain. It is assumed that this addi-
tive component is constant for one recorded speech
sample. The method now is to remove the bias b of
a set of feature-vectors

b =
1
T

T∑
τ=1

fτ (10)

from all feature-vectors

f̂τ = fτ − b. (11)

As an additional step of processing we perform a
singular value decomposition (SVD) of the matrix
formed by the feature-vectors F̂ ε R

T×D followed by
a projection onto the principal axes. The singular
value decomposition is given by

F̂ = U S VT (12)

where V ε R
D×D contains the principal axes of the

features onto which they are projected by

F̂proj = F̂ · V . (13)

The projection onto the principal axes reduces
the cross-correlation between different feature-
dimensions and therefore makes diagonal covariance-
matrices more suitable for modeling the true covari-
ance matrices of the true probability density func-
tion.

The principal axes Vq obtained from the training se-
quence of a speaker have to be kept along with the
model parameters λq for the step of classification.
There, the matrix of the test-features has to be pro-
jected onto the principal axes of the speaker model
it is tested against:

F̂test
proj = F̂test · Vq (14)

The recognition rates (plotted as the dashed line in
Figure 1) obtained by such features are even better
than for just appending Δ−coefficients .

Appending Δ−coefficients after the bias removal
and including them before the singular value decom-
position yields features which here give a further in-
crease of the recognition rate plotted as the dotted
line in Figure 1.

It shall be a main aspect in Section 5 to evaluate
the robustness of the presented feature variants in
the case of noisy test sequences.

3. ACOUSTIC SCENARIO

The four test cases compared in this work are:

1. No reverberation - no noise
(ideal acoustic case)

2. Reverberation by car-cabin - no noise
(speaker in the car, car halted, engine off)

3. Reverberation by car-cabin - idle engine
(speaker in the car, car halted, engine on)

4. Reverberation by car-cabin - noise at 50 km/h
(speaker in the car, car driving)
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For the multi-channel system a linear array of four
microphones placed 6 cm apart from each other is
considered.

3.1. Reverberation
The acoustic effect of reverberation is emulated by

computing impulse responses hr(k), r = 1..4 be-
tween the speaker and the four microphones in a
small room after [8]. The setup is illustrated in Fig-
ure 2.
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Figure 2: Room for simulating reverberation; the co-
ordinates [x y z] indicate the position of the speaker
and the microphones 1 and 4 (in meters)

The specifications are:

• The room is of 2 meter width (x) , 3 meter depth
(y) and 1.5 meters height (z).

• The microphone array is placed at the same
width as the speaker, but 30 cm above. The
distance of the speaker to the array is 70 cm.

• The microphone array is pre-steered directly to-
wards the speaker.

• The reverberation time was chosen as

τ60 =50ms which is sufficient as an assumption
for car-cabins.

3.2. Noise
For multichannel noise-reduction systems certain

assumptions are made about the noise-signals per-
ceived at the different microphone-channels. The as-
sumptions and their consequences will be discussed
in detail in Section 4. To account for a realistic
environment the noise signals sensed at the micro-
phones were not generated by artificial noise but
recorded. An array of four microphones with the
analogue spacing of d = 6cm was mounted at the
sun visor of a medium-sized vehicle. Two kind of
noises were recorded:

• Halted car, engine running idle

• Car driving at 50 km/h on asphalt

The noise generated by air stream, the engine and
tire friction at 50 km/h is shown in Figure 3. It
has obviously strong low-pass characteristics which
emerge from vibrations of the car body and the inner
lining. This shall be addressed again in Section 4.
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Figure 3: Car noise at 50 km/h

3.3. Generating Test-Sequences
For the task of generating proper test sequences

under the different acoustic conditions the following
steps were performed:
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• For consideration of reverberation the clean
speech signal s̃(k) was convolved with the im-
pulse responses hr(k) to yield the signal at
the specific microphone r leading to sr(k) =
s̃(k) ∗ hr(k).

• If noise had to be considered the noise signal
nr(k) was added to the reverberated speech sig-
nal giving xr(k) = sr(k) + nr(k).

The noise level for the test cases 3 and 4 were mixed
at signal-to-noise ratios equivalent to recorded sam-
ples taken during the recording session. Exemplarily
we depict four variants of speech samples in Figure
4.
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Figure 4: Examples of speech samples:
a) clean speech b) reverberation only
c) noise at idle engine d) noise at 50km/h

4. MULTI-CHANNEL NOISE-REDUCTION

4.1. Preprocessing
The noise perceived at a microphone while driving

at 50 km/h was presented in Figure 3. The strong
lowpass characteristics of the noise with the noise
power being strongest below 200Hz motivate high-
pass filtering of the microphone signals prior to

subsequent processing. Applying a highpass filter
with a cutoff frequency of 200Hz would on the one
hand remove the greatest amount of noise power,
but at the same time also parts of the speech sig-
nal. The main formants of male speakers may lie as
low as 100 Hz. Therefore, we use a highpass filter
with a cutoff-frequency of 50Hz, allowing frequencies
around 100Hz to remain unattenuated. Harsher at-
tenuation of low frequencies might remove substan-
tial information of the speech signal which shall be
extracted by the MFCC-features.
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Figure 5: Highpass-Filter for Preprocessing

The fact that all test-sequences are consequently
high-pass filtered demands an adaption of the
GMMs due to the fact that low frequency-
components are now totally missing for extracting
the MFCC-features. Thus, we decided to also apply
highpass-filtering to the training sequences prior to
feature extraction and model estimtation. Testing
the new models with features extracted from undis-
turbed and high-pass filtered test-sequences resulted
in almost the same recognition rates as those pre-
sented in Section 2.3. Exact results will be presented
in Section 5.

4.2. Considered Systems
Multi-channel noise reduction systems are known

to be superior to single-channel solutions in terms of
noise reduction and speech signal quality. The best-
known single-channel solution for noise reduction is
that of Ephraim and Malah [9].

The multi-channel systems considered in this contri-
bution are [10, 11]:
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• Delay&Sum-Beamformer

• Delay&Sum-Beamformer followed by a Post-
Filter

• Superdirective-Beamformer

• Superdirective-Beamformer followed by a Post-
Filter

The different systems are now explained more de-
tailed.

4.3. Delay&Sum-Beamformer
The Delay&Sum-Beamformer is the optimal solu-

tion of a system with Minimum Variance Distor-
tionless Response (MVDR) for the assumption of
an uncorrelated noise field [10]. The design crite-
rion is a minimization of the signal power under the
constraint of distortionless transfer function for the
desired source signal in look direction, which is the
speech signal.

The general structure can be seen in Figure 6:
For each microphone channel the signal is delay-
comensated to pre-steer the beamformer towards
the desired source. In our case no delay compensa-
tion is necessary since the beamformer is placed in
line with the speaker. The signals Xr(Ω) from the
r = 1..4 microphones are summed and normalized
by the number of microphones R. This yields the
signal Y (Ω), while Ω denotes the frequency index in
the Fourier domain. As an extension a post filter

PSD

estimation

�

X1(Ω)

X2(Ω)

X3(Ω)

X4(Ω)

Y (Ω)
S̃(Ω)

D
el

ay

W (Ω)1
R

Figure 6: Delay&Sum-Beamformer with Postfilter

W (Ω) can be applied, leading to the output signal
S̃(Ω) = Y (Ω) ·W (Ω). This shall yield a higher noise
reduction. Under the assumption that the speech
signal S(Ω) and the noise signal N(Ω) are uncorre-
lated for each channel r and that the noise signals

Nr(Ω) between different channels are also uncorre-
lated, Zelinski [12] designed a postfilter

WZ(Ω) =
2

R(R−2)�{
∑R−1

i=1

∑R
j=i+1 Xi(Ω)∗Xj(Ω)}

1
R

∑R
i=1 X∗

i (Ω)Xi(Ω)
(15)

where � denotes the real part of a complex variable,
and ()∗ the conjugate complex. It can be looked at
as an implementation of a Wiener filter [13, 14]

WW (Ω) =
ΦSS(Ω)

ΦSS(Ω) + ΦNN (Ω)
. (16)

for which ΦSS(Ω) is the power spectral density of the
speech signal and ΦNN (Ω) that of the noise signal
for an uncorrelated noise field.

Please note that for deriving (15) the influence of
the beamformer causing noise attenuation has been
neglected.

As it has been investigated previously [15, 16, 13, 17]
the assumption for uncorrelated noise signals be-
tween different microphone channels is usually not
fulfilled for all frequencies. A measure for this is the
Magnitude Squared Coherence (MSC)

MSC = Γ2
XiXj

(Ω) =

∣∣ΦXiXj (Ω)
∣∣2

ΦXiXi(Ω)ΦXjXj (Ω)
, (17)

between the noise signals of different channels {i, j}.
For the design of the Zelinski rule the MSC was as-
sumed to be zero for all frequencies.

Plotted below in Figure 7 is the MSC between the
recorded noise signals of channels {1, 2} and {1, 4}
respectively.

The MSC clearly follows the function being charac-
teristic for a diffuse noise-field

Γ2
XiXj

(Ω) = si2(2π · Ω · dij/c) (18)

depending on the distance between the microphones
dij only (c is the speed of sound). Obviously, there is
no microphone pair {i, j} at hand to provide reliable
cross-correlation terms X∗

i (Ω)Xj(Ω) for frequencies
below 1000 Hz as we see from Figure 7.

To encounter this problem, the computation of
the Zelinski-Postfilter was implemented for seperate
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Figure 7: MSC for microphones {1, 2} and {1, 4}

subbands [17] as

Wt(Ω) =

2
t(t−2)�

{
t−1∑
i=1

R∑
j=i+R−t+1

X∗
i (Ω)Xj(Ω)

}

1
R

R∑
i=1

X∗
i (Ω)Xi(Ω)

(19)
where t the index of the subband Bt with t = 1..R.

For the lowest frequencies below 1000 Hz it is re-
frained from computing a post-filter via (19) since
no microphone pairs will provide reliable estimates.
Instead, the filter coefficients W (Ω) are computed
as for the single-channel solution of Ephraim-Malah
[9].

4.3.1. Modified Post-Filter
Another variant of a post-filter deals with the prob-
lem, that for the derivation of (15) the noise at-
tenuation introduced by the beamformer has been
neglected. This might lead to a too strong attenu-
ation in general by the Post-Filter. Thus, Simmer
[14]defined a modfied post-filter, for which the de-
nominator of (15) is replaced by the autocorrelation
term behind the beamformer Y ∗

i (Ω)Yi(Ω). Exploit-
ing the subband approach, Simmer’s weighting rule
can be implented as [13]

WSW (Ω) =

2
R(R−2)�

{
R−1∑
i=1

R∑
j=i+1

X∗
i (Ω)Xj(Ω)

}

Y ∗(Ω)Y (Ω)
(20)

4.4. Superdirective-Beamformer
As outlined in the previous section, the noise field

in a car cabin can not be considered uncorrelated for
all frequencies but rather as a diffuse one, for which
the MSC has si2-characteristics.

The optimal solution of a MVDR-Beamformer for a
diffuse noise field is the Superdirective-Beamformer
depicted in Figure 8.
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Figure 8: Superdirective-Beamformer with Postfilter

The filter coefficients A1..4(Ω) are designed such that
for a diffuse noise field signals, coming from the di-
rection the beamformer is pre-steered to, are kept
unattenuated [10].

The post-filter proposed in [18] to gain higher noise
reduction is defined by the autocorrelation terms of
the beamformer’s output Y (Ω) and one channel sig-
nal X(Ω) as

WSD =
Y ∗(Ω)Y (Ω)
X∗(Ω)X(Ω)

(21)

5. RESULTS AND DISCUSSION
The systems for multi-channel noise reduction pre-

sented in the previous section were applied to the
test-sequences of the different test cases 1.to 4. be-
fore voice activity detection, feature extraction and
classification of the signals. This Section shall dis-
cuss the question which algorithms of noise reduc-
tion are suitable in order to improve recognition
rates for text-independent speaker identification.

5.1. Test Case 1
For the case of no reverberation and no noise, single-
channel sequences are classified after high-pass filter-
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ing. The recognition rates show only marginal de-
viations from those of Section 2.3 without high-pass
filtering. The results are depicted in Figure 9.
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Figure 9: Recognition rates of clean sequences
with and without high-pass filtering

Obviously the highpass-filtering had no significant
impact on the features and the models.

As for non-filtered test- and training-sequences the
features giving the best performance include the
delta coefficients and a singular value decomposition
after bias removal.

The model order chosen here was M = 40. For all
following results shown below this will be the case.
A variation of the model order was investigated but
did not lead to superior results.

5.2. Test Case 2
For reverberation of the test sequences the speech
signals were convolved with the impulse responses
from section 3.3. We consider three types of sig-
nal processing for the test-sequences after high-pass
filtering:

• Delay&Sum-Beamformer (D&S-BF)

• Superdirective-Beamformer (SD-BF)

• Single microphone, no further processing

Post-filters were not considered here since a high
noise reduction is not demanded in this test case.
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Figure 10: Recognition rates of test-sequences
with reverberation

Apparently the application of bias-removal and pro-
jection of the features onto their principal axes ob-
tained from the svd is the key to obtaining robust
features for the case of reverberation. Channel-
compensation performed by the bias-removal is es-
sential. The gain in recognition rate achieved by
multi-channel systems is minor compared to a sin-
gle microphone. Nevertheless, the results show that
speaker verification under the effect of reverberation
in a car-cabin is feasible.

5.3. Test Case 3
In this test case noise emerging from an engine run-
ning idle was added to the reverberated speech se-
quences.

First, recognition rates obtained from sequences
recorded by a single microphone shall be consid-
ered. The recognition rate for no signal processing
is plotted in Figure 11 along with recognition rates
achieved by the single-channel speech enhancement
of Ephraim and Malah (E&M) [9]. Their weight-
ing rule is known to suppress noise present in the
recorded signal, but also to degrade and attenu-
ate the desired speech signal to some extent. This
depends on the signal-to-noise ratio and has been
investigated in [Goetze] by instrumental measures.
The aspect addressed now is to which extent noise
reduction and/or signal degradation play a substan-
tial role for speaker identification.

In case of no signal processing the recognition rate
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Figure 11: Recognition rates of test-case 3
for single-channel speech enhancement

was highest for the same features as for the previous
test cases, as denoted in the Figure, yielding 67%
recognition rate. Improvement was not achieved by
single-channel speech enhancement regardless of fea-
ture choice. This indicates that noise reduction does
not seem to be the main goal of signal processing in
our case. Instead, we suspect that signal degrada-
tion leads to distorted features and lower recognition
rates.

As a next step, we examine the results when apply-
ing a Delay&Sum-Beamformer and a Superdirective-
Beamformer.

The difference in recognition rate for the two beam-
formers are absolutely marginal. Just as for test-case
2 discussed in the previous Section, the features not
having undergone bias removal and projection onto
the principal axes are not robust enough for this test-
case. They are therefore disregarded from here on.

We now want to focus on the techniques of post-
filtering outlined in Section 4. We consider the fol-
lowing possibilities:

• Delay&Sum-Beamformer + Zelinski-Postfilter
(D&S+Zel)

• Delay&Sum-Beamformer + Simmer-Postfilter
(D&S+Sim)

• Superdirective-Beamformer + Postfilter WSD

(SD+Post)
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Figure 12: Recognition rates of test-case 3
for different beamformers

The corresponding results are drawn in Figure 13.
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Figure 13: Recognition rates of test-case 3
for different postfilters

In general, no post-filter technique caused a bet-
ter recognition rate than those when beamformers
only. Apparently, a reduction of noise level achieved
by these post-filters (as proven in [13]) is also for
this test-case not the main goal. Much more, sig-
nal degradation is the major aspect. In [13] the
signal-degradation caused by a Zelinski-post-filter
was found to be more harsh than for the post-filter
defined by Simmer, while their achievement of noise
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reduction is at equal level. This corresponds to the
recognition results.

The postfilter WSD of the Superdirective-
Beamformer yields better results than other
postfilters but not better than the results for using
the beamformer only.

Also for this test-case speaker identification seems
to be feasible.

5.4. Test Case 4
The last case considered was car noise at 50 km/h.
The signal-to-noise ratio in this case is quite extreme
as can be seen from the speech sample depicted pre-
viously in Figure 4. For different signal processing
techniques the results are presented in Figure14
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Figure 14: Recognition rates of test-case 4
for different filtering techniques

Let us at first not pay attention to the choice
of feature but the general capabilities of the dif-
ferent filtering techniques. For classifying the
noisy sequences (’noisy’) directly the recognition
rate drops to approximately 15%. The single-
channel technique of Ephraim and Malah (E&M)
gives only little improvement by a few per-
cent. The Delay&Sum-Beamformer (D&S) and the
Superdirective-Beamformer both yield recognition
rates above 50% with the latter one being slightly su-
perior. The Zelinski- (Zel) and the Simmer-postfilter
(Sim) applied after the Delay&Sum-Beamformer
once again cause detirioration of the recognition
rates. The post-filter WSD applied after the

Superdirective-Beamformer neither reduces nor im-
proves the recognition rate significantly.

While in test-case 3 the signal-to-noise ratio was at
a rather moderate level, it was in test-case 4 at a
rather extreme one. Under this condition even signal
processing techniques still performing at a satisfac-
tory level in case 3 fail to conserve the clean speech
signal. As well as previously experienced, applying
beamformers only to the signal seems to be the best
approach in order to achieve good results since a
minimum of signal degradration is the main issue
for speaker recognition.

Focusing now on the feature choice, we see that the
including the Δ-coefficients in the features did not
give better results, but instead slightly worse. While
under sufficient acoustic conditions in test-case 1-
3 the temporal information extracted by the Δ-
coefficients yielded more sensitive information and
thus slightly higher recognition rates, this is not pos-
sible any more under adverse conditions.

6. CONCLUSION
In this paper, we combined gaussian mixture models
for text-independent speaker identification with the
acoustic circumstances of in-car communications.
The general procedure of buiding stochastic mod-
els for speakers and comparing test sequences with
the models was reviewed.

The acoustic conditions in a car-cabin were consid-
ered. Possible techniques of signal processing were
outlined and discussed. Different test-cases were in-
vestigated in terms of recognition rates yielded by
simulation results relying on a database.

The results showed that multi-channel techniques
are superior to single-channel techniques for speaker
identification under the considered circumstances.
In general, beamformers applied to the signals alone
are more favourable than any post-processing steps
due to the fact that the signal degradation has to be
kept at a minimum.

It has been shown that speaker identification is in
some cases a feasible task in an automotive environ-
ment, but not under extreme conditions.
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