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Abstract— OFDM is well-known for its ability to cope con-
veniently with severely frequency-selective channel conditions.
However, the performance of OFDM is degraded if the channel
is rapidly time-varying as well. Previously, sectorized receive
antennas were shown to reduce the channel’s effective Doppler
spread. Thereby, rapid channel fluctuations are rendered into
slow fluctuations. Hence, intercarrier-interference is avoided, and
channel estimation and data detection are alleviated. In this paper
we present a novel frame synchronization scheme to determine
timing and frequency offsets for sectorized antenna reception.

I. INTRODUCTION

OFDM’s appeal stems from its ability to allow for low
complexity equalization. This is achieved by increasing the
symbol duration beyond the maximal channel delay and by
choosing a suitable rectangular filter function. Thereby, the
subcarriers become orthogonal, i.e., they are not interfering,
and a multipath channel is basically transformed into a set
of parallel flat-fading channels. An inherent assumption to
uphold the subcarriers’ orthogonality is the time-invariance
of the channel which is violated for rapidly fading channels.
Those will introduce intercarrier-interference.
In a previous paper, the authors demonstrated that sectorized
receive antennas can effectively reduce the channel’s time-
selectivity prior to the receiver side FFT [1]. These sectorized
receive antennas are directional and limit all possible angles
of incidence to a finite range. Thus, it becomes possible to
divide the Doppler spectrum with its full Doppler spread into
subspectra with reduced Doppler spread. Hence, the channel
impulse response of each sector is characterized by less time-
selectivity than a comparable omnidirectional antenna and
intercarrier interference is no longer an issue.
In the following, a timing and frequency synchronization
scheme for sectorized reception is devised. Although it is even-
tually heuristic in nature, it is guided by a maximum-likelihood
approach which is similar to [2]. However, its novelty lies in
the exploitation of several OFDM symbols and of multiple
receive antennas. Furthermore, our synchronization scheme is
bandwidth-efficient in that it is based on the repetitive OFDM
signal structure due to the cylic prefix, i.e., no additional
training is required.
The remainder of the paper is organized as follows. In Sec-

tion II we introduce our system model. Section III details our
synchronization approach. Simulation results are presented in
Section IV, and conclusions are drawn in Section V.

II. SYSTEM MODEL

We consider a coherent and coded OFDM system with one
transmit antenna and S sectorized receive antennas. Details
about the latter are given in Section II-A. Forward error
correction of the information bits is accomplished by a convo-
lutional code of constraint length Lc and code rate 1/2. The
coded bits are randomly bit-interleaved and mapped to an M -
ary PSK/QAM signal constellation. Since we are considering
coherent reception the data symbols are multiplexed with pilot
symbols yielding symbols d(ν, i) on the ν-th subcarrier in
the i-th OFDM symbol. Throughout the paper we assume
a rectangular pilot grid with pilot spacing Δf and Δt in
frequency and time direction, respectively, i.e, the pilot po-
sitions in the OFDM time/frequency grid are integer multiples
of Δf and Δt. The pilot symbols are drawn randomly and
uniformly distributed from the same signal constellation as
the data symbols. The receiver has perfect knowledge about
them. After IFFT and prepending the cyclic prefix (CP) which
consists of Ng symbols the OFDM transmit signal in complex
equivalent baseband notation reads

x(k) =
1√
N

∞∑
i=−∞

N−1∑
ν=0

d(ν, i)ej2πν(k−iZ)/N g(k − iZ) . (1)

We defined the number of subcarriers to be N , Z = N + Ng,
as well as the rectangular filter function g(k) which is 1 for
−Ng ≤ k < N and 0 otherwise. The receive signal at the s-th
antenna reads

y(k, s) =

L−1∑
�=0

h(�, k, s)x(k − � − θ) + n(k, s) , (2)

where the additive white Gaussian noise with power σ2
n is

denoted by n(k, s) and the unknown timing offset by θ. It is
assumed that θ is an integer value, deterministic and constant
over the observation interval.
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A. Sectorized Antennas

The purpose of sectorized antennas is the reduction of the
channel’s Doppler spread yielding impulse responses with re-
duced time-selectivity. We are modelling sectorized reception
based on the wide-sense stationary and uncorrelated scattering
(WSSUS) assumption which resembles a richly scattering and
isotropic scenario. A channel impulse response for the s-th
antenna in accord with the WSSUS assumption reads [3]

h(�, k, s) =
1√
Ne

Ne−1∑
μ=0

a(μ, s)ej2πfD(μ,s)Tkδ(�−�(μ, s)) (3)

with delay index 0 ≤ � < L, time index k, sampling period
T , and the length of the impulse response L. The Ne paths
are characterized by their path amplitude a(μ, s), Doppler
frequency fD(μ, s) and delay �(μ, s).
Relative motion between transmitter and receiver leads to a
Doppler shift of each impinging wave, an effect which is
described by [4]

fD(μ, s) = fD,max cos(φ(μ, s)) . (4)

Eq. (4) relates the maximum Doppler frequency fD,max and the
angle of incidence φ(s, μ) of the μ-th path and s-th antenna
to the resulting Doppler shift fD(μ, s).
Omnidirectional reception is modelled by angles of incidence
which are uniformly distributed in the interval [0, 2π]. Then
the famous U-shaped or Jakes’ Doppler spectrum results.
However, we are concerned with antennas which are sectorized
and, hence, not omnidirectional. Their main benefit lies in the
limitation of all possible angles of incidence to a finite range.
Thus, they are exposed to a reduced Doppler spread leading
to a less rapidly fading channel.
In the following we assume perfect sectorization, i.e., an
impinging wave is assigned uniquely to an antenna according
to its angle of incidence. For this case we configure the
sectorized antennas such that the full Doppler spectrum is
divided into equispaced subspectra [5]. This approach causes
the same reduced Doppler spread in each antenna. In Tab. I the
sector angles for S = 2, 4, 6, 8 sectors are given. It is assumed
that the direction of motion coincides with the 0◦-direction.
An example for the case S = 4 is depicted in Fig. 1.

0◦

φ(0)φ(1)

φ(2) φ(3)

direction
of
motion

Fig. 1. Division of the horizontal receive plane into S = 4 sectors

It depends on the scenario whether the sector alignment in
practice is exactly as depicted in Fig. 1. For instance, if the

sectorized antenna is mounted on top of a fast moving vehicle
this can be easily fulfilled. In other cases it might be beneficial
to choose a different sector configuration. In this paper we are
mainly concerned with the former case.

TABLE I

SECTOR ANGLES FOR EQUAL DOPPLER PARTITIONING

S φ(0) φ(1) φ(2) φ(3) φ(4) φ(5) φ(6) φ(7)
2 90 270
4 70.5 109.5 250.5 289.5
6 60 90 120 240 270 300
8 53.1 78.5 101.5 126.9 233.1 258.5 281.5 306.9

Each sectorized antenna experiences not only a reduced
Doppler spread but also a Doppler shift [1], [5]. The Doppler
shift needs to be compensated at the receiver prior to the FFT,
otherwise it leads to leakage. The frequency fc(s) which is
required for compensation is the mean frequency offset for
each sector. The mean frequency follows from

fc(s) =

fD(s+1)∫
fD(s)

fD p(fD) dfD , (5)

where fD(s) denotes the Doppler frequency corresponding
to the angle of incidence φ(s), and p(fD) the probability
density function (pdf) of the Doppler frequencies fD. A
simple approximation of (5) for uniformly distributed angles
of incidence is given by [5]

fc(s) ≈

⎧⎪⎨
⎪⎩

fD,max cos ((φ(s)/2) , s = 0

−fD,max sin ((φ(s)/2) , s = S
2

fD,max cos((φ(s) + φ(s + 1))/2), else .

Compensation is achieved by

ỹ(k, s) = e−j2πfc(s)Tky(k, s) . (6)

B. Correlations

The synchronization metric which we are about to derive
depends on the correlation introduced by the channel. The WS-
SUS assumption leads to a separation of time and frequency
correlation [3]. The channel correlation in time Θ(κ, s) which
eventually influences the timing metric, is given by

Θ(κ, s) = E
{

ej2πfD(s)Tκ
}

. (7)

The mean is taken with respect to the probability density
of the Doppler frequencies within the s-th sector. Thus, the
autocorrelation function (ACF) of the receive signal in the s-
th sector reads

ryy(κ, s) = E{y(k, s)y∗(k + κ, s)} = σ2
xΘ(κ, s) + σ2

nδ(κ) .
(8)

If the frequency offsets are known the timing correlation is
given by

Θc(κ, s) = E
{

ej2π(fD(s)−fc(s))Tκ
}

. (9)

The ACF of the frequency compensated signals reads

rỹỹ(κ, s) = E{ỹ(k, s)ỹ∗(k + κ, s)} = σ2
xΘc(κ, s) + σ2

nδ(κ) .
(10)
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III. SYNCHRONIZATION

Firstly, we are assembling the received symbols of all
antennas at time instant k in the vector

y(k) = [y(k, 0), · · · , y(k, S − 1)]T . (11)

Furthermore, let us define the set T = {fc(0), · · · , fc(S −
1), θ}, which contains the parameters to be determined. The
antennas are spaced sufficiently close to safely assume the
same timing offset for all of them. We maximize the condi-
tional probability p(T |{y(k)|∀k}), i.e, the probability of the
frequency offsets fc(0), · · · , fc(S − 1) and the timing offset
θ conditioned on all received symbols. If we apply the mixed
Bayes rule to the conditional probability we find the parameter
set equivalently through

T = argmax
T

p
(
{y(k)|∀k} | T̃

)
. (12)

Unlike [2] we utilize all OFDM symbols and all antennas to
determine the timing and frequency offsets. The OFDM signal
structure introduces correlations between certain symbols in
a distance equal to the OFDM symbol length. The received
symbols for the i-th OFDM symbol are thus collected in the
vector

z(i, θ) = [ y(iZ+θ−Ng)
T, · · · , y(iZ+θ+N−1)T ]T . (13)

Then exploitation of the statistical independence of the OFDM
symbol allows for maximizing the log-likelihood function
instead of (12)

λ0(T̃ ) =

∞∑
i=−∞

log p(z(i, θ̃)) . (14)

We have dropped here the dependence on the hypotheses on
the right hand side to avoid cluttering notation. The transmit
signal (1) can be assumed to be Gaussian distributed if the
number of subcarriers is sufficiently large which in practice
usually is fulfilled. Hence, the receive signals (2) are jointly
Gaussian and the vector z(i, θ) is described by a normal
distribution.
OFDM symbols are composed of a cyclic prefix and its replica
in the core symbol. These portions are therefore correlated,
whereas the remainder of the OFDM core symbols remains
uncorrelated. With k = iZ + θ + k we can write

p(z(i, θ)) =
−1∏

k=−Ng

p(y(k), y(k + N))

N−Ng−1∏
k=0

p(y(k)) .

(15)
Note that (15) is the same likelihood metric as in [2]. However,
in our approach it is only a partial metric to be used in (14).
Substituting (15) in (14) and suitable expansion of numerator
and denumerator leads to the metric (k′ = iZ + θ̃ + k)

λ1(T̃ ) =

∞∑
i=−∞

−1∑
k=−Ng

log
p(y(k′), y(k′ + N))

p(y(k′))p(y(k′ + N))
. (16)

Eq. (16) utilizes all OFDM symbols and all antenna signals
and can be considered optimal in this respect to derive the

timing metric from. It contains the metric of [2] as a special
case for one OFDM symbol and one antenna in AWGN.
However, in this form (16) is impractical due to several
reasons, which we will discuss in the following. This will
direct us to practical implementations of (16).
The outer summation ranges over all OFDM symbols, i.e.,
−∞ < i < ∞, which is clearly not feasible. However,
truncating the sum to a finite number of OFDM symbols
renders the metric feasible (k′′ = i′Z + θ̃ + k)

λ2(T̃ (i)) =

i∑
i′=i−B

−1∑
k=−Ng

log
p(y(k′′), y(k′′ + N))

p(y(k′′))p(y(k′′ + N))
. (17)

Because of the truncation of the outer sum the timing offset
will now be estimated for each OFDM symbol. Hence, it
becomes time-varying and is now indexed by the OFDM
symbol index i. However, this estimate is supported by B +1
OFDM symbols.
The application of (17) requires the specification of the pdfs.
Those depend on the considered scenario. Since the receive
signals (2) are antenna-wise uncorrelated, we have

λ2(T̃ (i))=

S−1∑
s=0

i∑
i′=i−B

−1∑
k=−Ng

log
p(y(k′′, s), y(k′′ + N, s))

p(y(k′′, s))p(y(k′′ + N, s))
.

(18)
In its general form the summand of (18) is given in (19) on top
of the next page. The last term of (19) depends on the auto-
correlation function (8) of the receive signals. In the simulation
results we will show the influence of different degrees of
apriori knowledge at the receiver. For instance the AWGN
and high SNR form of (19) is given by the Euclidean distance

log
p(y(k, s), y(k + N, s))

p(y(k, s))p(y(k + N, s))
∝ −|y(k, s) − y(k + N, s)|2 .

(20)

A. Adaptation to multipath channels

Eq. (19) is valid only in the intersymbol-interference (ISI)
free region of a cylic prefix. Hence, we are introducing a
slight change in the inner sum of (18) to exclude those ISI-
contaminated parts from the overall sum

λ3(T̃ (i))=

S−1∑
s=0

i∑
i′=i−B

−1∑
k=−Ns

log
p(y(k′′, s), y(k′′ + N, s))

p(y(k′′, s))p(y(k′′ + N, s))
.

(21)
In (18) all Ng samples of the CP are included, (21) is restricted
to Ns ≤ Ng samples. This approach leads to a timing
plateau [6], i.e., a successive set of possible indicators for
the timing offset. We found that a moving average filter of
length Ng − Ns + 1 is sufficient to concentrate the energy
of the timing plateau into a triangular shape, whose peak is
a reliable indicator of the timing offset. This specific length
coincides with the size of the timing plateau for the AWGN
case and was found through simulations to work just as well
for the multipath case.
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log
p(y(k, s), y(k, s))

p(y(k, s))p(y(k + N, s))
∝ −|y(k, s)|2 − |y(k + N, s)|2 + 2ryy(0, s)Re

{
y(k, s)y∗(k + N, s)

ryy(N, s)

}
(19)

B. Detecting the timing offset and the frequency offsets

Eq. (21) can be seen as a form of preprocessing prior to the
actual detection of the timing offset and the frequency offsets.
To avoid an expensive exhaustive search over all hypotheses
we resort to a suboptimal two-stage approach [2]. Initially,
the timing offset is determined while the presence of the
frequency offsets is completely disregarded. The detection
itself is carried out based on a search window of OFDM
symbol size, N + Ng. Within this window the maximum of
(21) is determined, whose position, θ̂(i), is used as the timing
offset for the current OFDM symbol. The search window is
then advanced by N +Ng symbols. Simulation results indicate
that the timing metric (20) which is appealing due to its low
complexity works inferior compared to (19). Hence, in practice
it is necessary to estimate the autocorrelation of the receive
signals (8). With the timing offset estimated the frequency
offsets are determined based on the last term on the right
hand side of (19). Since the other terms are contributing only
magnitude information, this is the only term containing phase
information. Thus, we estimate the mean frequency for the s-th
antenna and the i-th OFDM symbol by (m = i′Z + θ̂(i)+ k′)

f̂c(i, s) = −
i∑

i′=i−B

−1∑
k′=−Ns

arg{y(m, s)y∗(m + N, s)}
2π(B + 1)T

.

(22)
Since an estimate of the frequency offsets is now available it
becomes possible to compensate this frequency offsets prior
to determining the timing offset. With respect to performing
the timing synchronization based on (20) this approach is ad-
visable since we are disregarding the presence of any frequeny
offset for determining the timing offset. Hence, removing the
frequency offsets will alleviate the estimation of the timing
offset.
However, the maximum frequency offset which can be es-
timated is limited. Phase changes which are larger than π
between symbols with OFDM symbol distance cause phase
ambiguities. These can not be resolved. Ultimately, if a
frequency offset estimate is required because we are lacking
knowledge about the direction of the relative motion the
maximum Doppler spread which can be compensated is also
limited.

IV. SIMULATION RESULTS

We present results for a coherent OFDM system with
N = 64 subcarriers and a cyclic prefix of length Ng = 16.
A convolutional code with generator polynomial (133, 171)8
and constraint length Lc = 7 is used for error protection. The
pilot spacing is Δt = 2 and Δf = 5. Channel estimation
is done based on linear interpolation. Firstly, the channel
is estimated at the pilot positions by dividing through the
pilot symbols. This is followed by linear interpolation first
in frequency direction, then in time direction. We additionally
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Fig. 2. Variance of the timing offset for the single transmit and receive
antenna case, L = 9, Ns = 6

assumed to have knowledge about the channel’s power delay
profile. Especially, it is necessary to know the center of gravity
of the power delay profile, since our CP-based synchronisation
scheme is biased towards it. In practice one needs to estimate
it, otherwise it will lead to intersymbol interference since the
timing offset leads to an FFT start within the core symbol.
Another solution for this problem is to split the cyclic prefix
into a cyclic pre- and a postfix. This retains the subcarrier’s
orthogonality and omits the error-prone estimation of the
center of gravity of the channel’s impulse response.
In Fig. 2 we consider the error variance of the detected timing
offset vs. Eb/N0 for the single transmit and receive antenna
case. Two Doppler scenarios are chosen, representing slow
(fD,maxTs = 0.001) and fast (fD,maxTs = 0.15) fluctuations.
The parameter B controls the number of additional OFDM
symbols which are used to detect the timing offset, i.e., for
B = 0 only one OFDM symbol is used, whereas B = 64
exploits 64 additional OFDM symbols.
It is evident from Fig. 2 that the large Doppler frequency
leads to a large variance of the detected timing offset, if
only one OFDM symbol is used. Exploiting receiver side
knowledge about the channel correlations serves for lowering
the error variance. However, if we increase the number of
additional OFDM symbols to B = 64 the error variance for
the large Doppler case even becomes lower than for the slow
fading case. Hence, we conclude that the inclusion of several
OFDM symbols greatly enhances the reliability of CP-based
synchronization, even for rapidly fading channels.
To strengthen this observation we consider the sectorized
receive antenna case in Fig. 3. We have chosen S = 8
sectors, and frequency compensation is performed perfectly
prior to timing synchronization. If the frequency offset is
perfectly known, the error variance of the timing offset can
be effectively decreased by enlarging B. This holds true for
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the metric which exploits the known correlation and for the
metric (20) which completely disregards any correlations.
This behavior changes if the frequency offsets of the sectors
are not compensated. For this non-compensated case Fig. 4 de-
picts the error variance of the timing offset vs. the normalized
Doppler frequency fD,maxTs. Maximum Doppler frequencies
beyond approximately 0.2 are deteriorating the detected timing
offset, regardless of a larger number of supportive OFDM
symbols.
For Fig. 5 we jointly estimated frequency and timing offsets
like we discussed in Section III-B. We estimate the timing
offset based on the frequency compensated receive signals.
In turn the frequency offsets are estimated based on the
detected timing offset, i.e., (22). The timing metric based
on the known correlation clearly benefits from the frequency
compensation. The SNR-loss due to imperfect synchronization
is approximately 0.5 dB for B = 64. However, the timing

Fig. 5. BER vs Eb/N0 for the single transmit antenna and S = 8 receive
antennas case, fD,maxTs = 0.2 channel length L = 9, Ns = 6, legend:
B = 0 (◦), B = 1 (�), B = 16 (♦)

metric which disregards the correlation leads to an error-floor
even for the case B = 64.

V. CONCLUSIONS

Sectorized antenna reception subdivides the Doppler spec-
trum into a number of subspectra with reduced Doppler spread.
Thus each sector corresponds to an impulse response of
reduced time-selectivity. Thereby intercarrier-interference is
avoided, and the subcarriers stay orthogonal. A timing and fre-
quency synchronisation for sectorized antenna reception was
devised. It is cyclic prefix based, and introduces no additional
need for training data. It is novel in that it exploits several
OFDM symbols, all antennas and the channel correlations. We
demonstrated that CP-based synchronisation does not deliver
an accurate timing and frequency offset for rapidly fluctuating
channels, if only one OFDM symbol is exploited. However,
a feasible number of OFDM symbols does indeed increase
the accuracy of the timing metric and allows for reliable
data transmission, even under large Doppler influence. BER
simulations revealed that it is necessary to estimate the channel
correlations to ensure correct data transmission.
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