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Motivation
= Listening Room Compensation (LRC) / Room Impulse Response
Shaping can increase speech intelligibility.
= Since LRC devices are designed for fixed positions of lousdpeaker
and microphone spatial mismatch degrades performance.
= This contribution demonstrates the effects of spatial mismatch
visually and acoustically.

Listening Room Compensation

= An equalizer precedes the acoustic channel
= Common design method: Least Squares Equalizer ceq = HTd
= Problem: Channel h[k] is needed!
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= The desired systemd[k] is approximated by the overall system of
CEQ [k’] * h[k]

Room Impulse Response Shaping

= The goal is not spectral flatness of the overall system but a
concentration of the energy at a specified temporal envelope
(desired aread,).

dd = diag{wd}HcEQ
d, = diag{l — Wd}HCEQ
= Maximization of the energy of d,while keeping the energy of du

constant leads to the impulse response shortener after Melsa
[MYR96, MMEJO3].

Bgp - cEQ,opt = A * CEQ,0pt " Amax
A= HHdlag {Wprd}QH

. 2
BBP = ngdlag {WBP,d} HBP

= Problem: spectral peaks occur in overall transfer function!

= Post processing by a linear prediction filter can reduce the spectral
overshoots [KMO5].
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= For reducing the problem of late echoes the impulse response should better
be shaped than shortened [KMO5].
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Spatlal Senslitlvity A

= LRC devices are usually designed for fixed and a-priori known
positions of source and microphone.

= If the assumptions of the spatial configuration are violated severe
distortions may occur.

A known RIR Ieads toa good equallzatlon.
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Spectral Flatness Measure (SFM) for a LS-EQ, order 2048,
T60 = 200 ms, position 3
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Constralned LS-EQ design

= If an estimation error for the transfer function exist H = H + H the
least squares EQ can be modified considering these errors.
ceq=HTH+ H'H )"'Hd
~4-||h|21
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= Constraining the least squares design enhances spatial robustness.
= Spectral peaks due to spatial mismatch can be strongly reduced.

impulse Response Smoothing

= Complex Fractional Octave Smoothing as proposed in [HMO0Q] is
also capable to increase spatial robustness.
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= This can be done by a exponential decreasing window. E : f "
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- " = RIR shaping and constrained LS-EQ design lead to spatially more
N ° oo 000 Y robust LRC designs than Complex Smoothing.
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Quality Assessment ' MATLAB® Demno
= Subjective quality assessment is time consuming and expensive. = The different LRC schemes can be compared by means of various
= Reliable and commonly accepted quality measurement (of obje_ctive measures _(see Ieft column). F_urthermore a subjective
enhancement) for dereverberation algorithms has yet to be found. quality assessment is possible by applying the precomputed

equalizers to a given sound-file and by listening to the equalized
sound-file acoustically.

.

4 Objective Quality Measures for LRC h

= Several measures can be found in the literature to evaluate
dereverberation algorithms:

Measures based on the transfer functiomn:

= Variance of logarithmic transfer function [Mou94]:
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Hip=—"—"- > 20-logioH[n]|
tmax = Tmin T L n=n,,;,

‘H[n] = H[n]Cgq[n] : concatenated system of EQ and RTF
n : discrete frequency index
nin - frequency index corresponding to f = 200Hz
nmin - frequency index corresponding to f = 3600Hz
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= Spectral Flatness Measure (SFM), [Joh88 = Possible EQ designs: LS-EQ, Constrained LS-EQ,
P (SFM), [Joh8s] e YTIrr Q desig Q. Con: Q
SFM=Z== Iy NI )2 RIR smoothing, RIR shaping
w0 N £n=0 . .
Gln] : Geometric mean . Poss!ble EQ orders (@8k.Hz).. 128, 256, 512, 1024, 2048
Aln] : Arithmetic mean = Possible room reverberation times: 50ms, 100ms, 200ms,
Measures based on the impulse response: . 400ms, 800ms, 1200ms
50— . . o
= “Deutlichkeit” (D50), [Kut00] Dso = Zkfo (ceqlk] « hlk)) = Possible spatial positions: 4
Yl o(ceqlk] * hlk])? -
kso = 50ms/ fs : discrete time index corresponding to a time of 50ms '3
= Clarity Index (CI), [Kut00] = S8 (ceqlk] * hlK])2[K] 025
[7)
Skl ko (CEQIR] % AIK]2[K] g2) 1
kgo = 80ms/ fs : discrete time index corresponding to a time of 80ms i 1'? b
= Central Time (CT), [Kut0O] or— z,%o k(ceqlk] * h[K])2[K] 05 l
Sl o(ceqlk] * hlk])2[K] 0 2 ””” —
= Direct-to-Reverberation-Ratio (DRR), [TS06] \_ x in meters .
(EQFhpan) * hlkn,,1)2 - )
DRR.m = 10
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