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Abstract— OFDM is well suited for data-transmission over
frequency-selective channels. If the cyclic prefix is chosen suffi-
ciently long, intersymbol interference is avoided. Thus, the linear
convolution becomes circular and the channel is rendered into a
set of flat-fading channels, which can be easily equalized. But this
holds no longer in the case of large Doppler spread, i.e., when
the channel is rapidly changing. Then the subcarriers lose their
orthogonality giving rise for so-called intercarrier interference
which is detrimental for the overall system performance. Among
previous proposals to cope with this problem was the use of
multiple receive antennas. These are positioned in the moving
direction of the receiver such that the individual antennas are
receiving delayed replica of the transmit signal via identical
paths. By means of interpolation this enables to fabric a virtual
non moving point of reception which seemingly experiences no
Doppler spread. So far, this technique has been applied in a
purely noncoherent setting resorting to differential modulation.
We will demonstrate how this approach can be exploited by co-
herent reception. Our emphasis thereby lies on the use of higher-
level modulation as well as Least-Square (LS) and Minimum
Mean Square Error (MMSE) channel estimation.

I. INTRODUCTION

Orthogonal Frequency Divison Multiplexing (OFDM) has
been specifically designed for coping with multipath fading.
Assuming that the impulse reponse of the channel is not
exceeding the cyclic prefix as well as staying almost constant
during the OFDM symbol duration, the channel matrix be-
comes circulant and is diagonalized by the IDFT/DFT matrix.
However, a rapidly changing channel with large Doppler
spread will violate this property. This is due to the Dirichlet
subcarrier spectra which are broadened such that the sub-
carriers are no longer orthogonal. Equivalently, the channel
matrix in frequency domain is no longer diagonal and exhibits
significant off-diagonal elements.
The major difficulty arises in connection with channel estima-
tion. Not only the data symbols, but also the pilot symbols
within the OFDM time-frequency grid are impaired by the
resulting intercarrier interference (ICI). Hence, the estimate of
the channel will be corrupted leading to an unsatisfying data
detection.
Conventional approaches to deal with ICI are based on re-
constructing the channel’s impulse response, e.g. [1], [2].
This technique basically performs an initial channel estimation
based on the ICI-corrupted pilot symbols, upon which the
channel matrix is reconstructed assuming a linear model for
the channel variations. The shortcomings of this technique

are the limited range of Doppler spreads for which the linear
model is valid and the increased computational demand, i.e.,
matrix inversion becomes necessary.
The weak spot of this solution is that it admits ICI in the
first place, thus, allowing for the ICI to corrupt the pilots
leading to a degraded channel estimation. The authors of [3],
[4] tackle the problem by employing multiple receive antennas
and a pre-processing of the received OFDM signal in time-
domain prior to the FFT. The idea is to position the antennas
in the direction of the motion, such that the individual antennas
will see identical paths with a delay which is determined
by their distance. With these receive signals at hand one
can design a Wiener/MMSE interpolator which generates a
virtual, non moving receive antenna, i.e., seemingly the pre-
processed signal will have been received via a channel with a
constant impulse response. Remarkable results are presented in
[3], [4] proving the effectiveness of this approach, however,
the authors chose to apply differential modulation to avoid
channel estimation. This will introduce an SNR-loss and is
limited to PSK modulation. The applicability is also limited
to channels with short impulse responses, i.e., channels which
do not exhibit too severe frequency selectivity. In this paper we
consider a coherent OFDM system with channel estimation.
We present two algorithms for channel estimation and inves-
tigate the performance limits of this interpolation technique
for a coherent OFDM system with channel estimation, which
offers the prospect of higher-level QAM modulations.

II. SYSTEM MODEL

We apply bit-interleaved coded modulation (BICM). In-
formation bits are convolutionally encoded and randomly
interleaved. The resulting code bits are mapped to symbols
dn(i). These are drawn from a QAM/PSK signal constellation.
The inverse discrete Fourier transform (IDFT) computes the
time-domain signal. After prepending the cyclic prefix the
overall OFDM signal in time-domain reads

x(k) =
1√
N

∞
∑

i=−∞

N−1
∑

ν=0

dν(i) · ej2πν(k−i(N+Ng))/N , (1)

with N subcarriers, Ng symbols for the cyclic prefix, and the
OFDM symbol index i. The OFDM signal is received by a
linear antenna array consisting of Nr antennas. The impulse
response of the frequency- and time selective channel at time
instance k and delay ` = 0, · · · , L − 1 is denoted by h`(k),



the additive noise (AWGN) for the a-th antenna is denoted by
na(k) ∼ CN (0, σ2

n). The receive signal at the a-th antenna,
0 ≤ a ≤ Nr − 1, thus reads

ya(k) =

L−1
∑

`=0

h`(k − aD)x(k − `) + na(k) . (2)

The spatial antenna distance translates into a reception of the
transmit signal via a delayed impulse response whereby the
delay between two antennas amounts to D symbols.
To create a virtual non moving antenna, the antenna signals
are linearly combined by a Wiener filter. In the following we
will refer to a virtual antenna as point of reception (POR).
We will generate multiple PORs to perform maximum ratio
combining to gain diversity. In Sec. V we will elaborate on
this idea.
Each POR acts as a diversity branch and is processed by an
OFDM receiver, which removes the cyclic prefix, computes the
FFT and performs channel estimation (CE). Two algorithms
for CE are presented in Sec. IV. The diversity branches are
merged by maximum ratio combining (MRC) (cf. Sec. V).
After APP-demapping and deinterleaving the Viterbi algorithm
(VA) decodes the received code bits.

III. SPATIAL INTERPOLATION

In this section we will repeat the derivation of the interpola-
tor which generates a POR. The original development can be
found in [3]. We will assume here that all antenna signals are
used to generate a POR. In Sec. V we detail the idea to process
two antenna signals at a time to generate multiple PORs.
A virtual non moving antenna is created by a Wiener filter
with output

ỹ(k) =

Nr−1
∑

a=0

w∗

a(k)ya(k) = wH(k)y(k) . (3)

We introduced the Wiener coefficients wk,a, the vec-
tor definitions w(k) = [w0(k), · · ·wNr−1(k)]T, y(k) =
[

y0(k), · · · , yNr−1(k)
]T

and the complex conjugate (·)∗ and
Hermitian transpose (·)H. Since (3) represents the signal that
we mainly will work with we introduce the equivalent model

ỹ(k) =

L−1
∑

`=0

h̃`(k) · x(k − `) + ñ(k) (4)

with h̃`(k) =
∑Nr−1

a=0 w∗

a(k)h`(k − aD) and ñ(k) =
∑Nr−1

a=0 w∗

a(k)na(k). The objective function of the Wiener
filter is chosen to be z(k) =

∑L−1
`=0 h`(P )x(k − `) which

means that the transmit signal x(k) seemingly has been
received over a channel with constant impulse response h`(P ),
where P denotes the time index of the impulse response
which we desire to interpolate. Please note that h`(P ) is the
realisation of the channel impulse response h`(k) at epoch
k = P , hence, it obeys the same statistics. We will refer to P
as an interpolation point. The Wiener coefficients in (3) are
determined by solving the MMSE criterion

E
{

|z(k) − ỹ(k)|2
}

= min
w(k)

, (5)

which is fulfilled by the Wiener-Hopf equation

w(k) = Φ−1
θ(k) (6)

with autocorrelation (AC) matrix Φ = E{y(k)y(k)H} and
crosscorrelation (CC) vector θ(k)=E{y(k)z∗(k)}. For a given
channel model the Wiener coefficients can be predetermined.
The elements of AC matrix and CC vector are given by

[Φ]a,a′ =E {ya(k)y∗

a′(k)} = ϕ̄hh((a′ − a)D) + σ2
nδa−a′

(7)

[θ(k)]a =E{ya(k)z∗(k)} = ϕ̄hh(k − aD − P ) (8)

Here, we introduced the mean autocorrelation function (ACF)
of the impulse response for Jakes’ channel model as

ϕ̄hh(λ) =

L−1
∑

`=0

E{h`(k)h∗

` (k + λ)} = J0(2πλγ/N). (9)

The Bessel function of the first kind is denoted by J0(·). The
variable γ = fD/∆f denotes the maximum Doppler frequency
fD normalized to the subcarrier spacing ∆f .
To assess the effectiveness of the interpolation approach we
compare the variance of the non interpolated impulse response
against the interpolated impulse response. Let us define the
latter as

σ2
h̃

=
1

N

N−1
∑

k=0

L−1
∑

`=0

E

{

∣

∣h̃`(k) − 1

N

N−1
∑

µ=0

h̃`(µ)
∣

∣

2
}

. (10)

The former, σ2
h, results from replacing h̃`(k) by h`(k) yielding

in terms of (9)

σ2
h = 1− 1

N2

N−1
∑

µ=0

N−1
∑

µ′=0

ϕ̄hh(µ − µ′) . (11)

To evaluate (10) let us define the (Nr×Nr) matrix Θ(λ) with
elements [Θ(λ)]m,n = ϕ̄hh(λ − (m − n)D). The variance of
the interpolated channel impulse response then reads

σ2
h̃
=

N−1
∑

k=0

wH(k)Θ(0)w(k)

N
−

N−1
∑

k,k′=0

w(k)HΘ(k−k′)w(k′)

N2
.

(12)

The variance of the non interpolated impulse response (11)
depends only on two parameters, i.e., the number of subcar-
riers and the maximum Doppler frequency. The dependencies
of (12) include on top of that the noise variance, the antenna
distance and the interpolation point.
In a practical system we are forced to fix the antenna distance.
Ignoring this fact for the moment we will exemplify the
minimal variances σ2

h̃
, one can expect from the interpolation

technique, if the antenna distance is chosen such that the
channel’s variance becomes minimal.
We have illustrated in Fig. 1 the ratio of the variance of
the interpolated channel to the non interpolated channel for
two different signal-to-noise ratios and different maximum
Doppler frequencies. We see that the minima are dependent
on the noise level, i.e., the smaller the noise, the smaller the



30 50 70 90 110 130
−35

−30

−25

−20

−15

−10

−5

0

 

 

30 50 70 90 110 130
−25

−20

−15

−10

−5

0

 

 

PSfrag replacements

a) Eb/N0 = 10dB b) Eb/N0 = 15dB

γ=0.05
0.1
0.15
0.2
0.3

1
0

lo
g
1
0
(σ

2 h̃
/
σ

2 h
)

1
0

lo
g
1
0
(σ

2 h̃
/
σ

2 h
)

D →D →

Fig. 1. Ratio of interpolated channel variance to the non-interpolated channel
variance, QPSK, Nr = 2

minimal variance against the single antenna case. We can also
see that a large Doppler frequency demands a small antenna
distance, since only then the antenna correlations are large
enough for a satisfying interpolation outcome and, eventually,
for a small bit error rate (BER). On the contrary, for small
Doppler frequencies it is advantageous to have a larger antenna
spacing. This can not be seen from the variance ratio, but
will be evidenced on the basis of BER measurements in the
simulation results. In practice one has to find a compromise.

A. Correlation and variances in frequency domain

In this section we summarize correlation functions and
variances which are necessary for the application of the
subsequent channel estimators.
At the receiver the discrete Fourier transform (DFT) of the
linearly combined signal (4) reads

r̃n(i) =
1√
N

N−1
∑

µ=0

ỹ(µ + i(N + Ng))e−j2πµn/N . (13)

We aim at separating the transmitted symbol dn(i) from the
ICI and the noise term in (13). Substituting (4) in (13) then
yields after a few steps

r̃n(i) =

N−1
∑

ν=0

L−1
∑

`=0

dν(i)H`(i, ν − n)e−j2πν`/N + η̃n(i) (14)

with

H`(i, ν−n) =
1

N

N−1
∑

µ=0

h̃`(µ+i(N+Ng)) ej2πµ(ν−n)/N (15)

and η̃n(i) being the DFT of ñ(k). We can now separate the
useful signal from ICI and noise

r̃n(i) = H̃n(i) · dn(i) + ζn(i) + η̃n(i) (16)

with

H̃n(i) =

L−1
∑

`=0

H`(i, 0)e−j2πn`/N , (17)

and the ICI term

ζn(i) =

N−1
∑

ν=0

ν 6=n

L−1
∑

`=0

dν(i)H`(i, ν − n) · e−j2πν`/N . (18)

The ACF of H̃n(i) reads

E{H̃n(i)H̃∗

n+∆n(i + ∆i)} = θf (∆n) · θt(∆i) (19)

with the partial correlation functions

θf (∆n) =

L−1
∑

`=0

σ2
` ej2π`∆n/N , (20)

θt(∆i) =

N --1
∑

k,k′=0

w(k)HΘ(k−k′
−∆i(N +Ng))w(k′)

N2
. (21)

The ICI-power is identical to (12)

σ2
ζ = E{|ζn(i)|2} = σ2

h̃
, (22)

and the noise power in frequency domain is given by

σ2
η̃ = E{|η̃n(i)|2} =

1

N

N−1
∑

k=0

‖w(k)‖2σ2
n . (23)

IV. CHANNEL ESTIMATION

We describe two algorithms for channel estimation. Im-
mediately to follow is the least square approach, which is
based on pilot symbols in each OFDM symbol spaced in
frequency at a distance of ∆f symbols. Although the large
amount of training reduces the useful data-rate we are able
to cope with large Doppler frequencies. Speaking of data-rate
leads us subsequently to our second, minimum mean square
error approach which relies on a scattered pilot-scheme. Here,
we space pilot-symbols additionally in time at a distance of
∆t symbols. The channel for OFDM symbols which are not
carrying any pilot symbols at all can then be interpolated
based on neighboring pilots. On the one hand the data-rate
is increased, but on the other hand we still have to adhere
to the sampling theorem. We can already suspect that the
interpolation technique will be beneficial only if the pilot
spacing in time direction is close to the critical sampling
frequency of twice the maximum Doppler frequency.

A. Least Square Channel Estimation

The received signal in frequency domain is given by (16).
We assume that NP equidistant pilot symbol are distributed in
frequency direction with distance ∆f . Hence, dividing by the
corresponding pilot symbol yields an estimate of the channel
coefficient at these positions

ȞLS
n∆f

(i) =
r̃n∆f

(i)

dn∆f
(i)

= H̃n∆f
(i) +

ζn∆f
(i) + η̃n∆f

(i)

dn∆f
(i)

. (24)

An estimate of the impulse response follows directly from
these channel coefficients using the IDFT

ĥLS
` (i) =

1

NP

NP−1
∑

n=0

Ȟn∆f
(i)e−j2πn∆f `/N . (25)

This approach exploits the fact that the channel transfer
function is usually oversampled, i.e., the number of subcarriers



is much larger than the cyclic prefix and the impulse response.
Assuming that NP = L yields

ĥLS
` (i) = H`(i, 0) + ηLS

` (i) (26)

with ηLS
` (i) = 1

NP

∑NP−1
n=0

ζn∆f
(i)+η̃n∆f

(i)

dn∆f
(i) e−j2πn∆f `/N . It is

seen from (17) that H`(i, 0) in (26) equals the mean channel
impulse response during one OFDM-symbol. Hence, the DFT
of (26) produces a noisy estimate of the effective channel
transfer function (17)

ĤLS
n (i) =

NP−1
∑

`=0

ĥLS
` (i)ej2π`n/N . (27)

The LS channel estimator has the advantage of an easy
implementation, since the estimation process only involves one
IDFT and one DFT. Those can be conveniently realized by
their fast Fourier counterparts. Additionally the channel can be
estimated without any knowledge about the channel’s power
delay profile. On the downside we have the reduction of the
useful data rate, since every OFDM symbol needs to carry pilot
symbols. This leads to the following MMSE channel estimator.

B. Minimum Mean Square Energy Channel Estimation

The MMSE channel estimator allows us to exploit a scat-
tered pilot scheme, i.e., some OFDM symbols are completely
free of training data. Hence, we have need of an estimator
which can interpolate the channel transfer function not only
in frequency direction but also in time direction. With a slight
abuse of notation we define the channel coeffcient at the ν-th
subcarrier in the µ-th OFDM symbol as

ȞLS
ν (µ) =

r̃ν(µ)

dν(µ)
= H̃ν(µ) +

ζν(µ) + η̃ν(µ)

dν(µ)
. (28)

Since we are considering a rectangular pilot grid, ν and µ are
multiples of ∆f and ∆t, respectively.
The Wiener coefficients for CE, wMMSE

n (i), follow by solving

E
{

∣

∣H̃n(i) −
(

wMMSE
n (i)

)H
ȞLS

n (i)
∣

∣

2
}

= min
w

MMSE
n (i)

. (29)

We define the vector ȞLS
n (i) as

ȞLS
n (i)=

[

ȞLS
ν0

(µ0), Ȟ
LS
ν1

(µ1), · · · , ȞLS
νNw−1

(µNw−1)
]T

. (30)

It carries LS channel estimates closest to the channel coeffi-
cient H̃n(i). To find these we follow the balanced design rule
of [5]. In short, this rule ensures that pilots are chosen, which
are lying in a direction of large correlation. For example, if the
channel is lowly frequency-selective, but highly time-selective,
mainly pilots in frequency direction will be chosen. We denote
by ĤLS

ν0
(µ0) the channel coefficient at pilot position (ν0, µ0)

which is closest to (n, i) in terms of the balanced design.
Consequently, ĤLS

ν1
(µ1) is the second closest, et cetera. Please

note, that the selection of the pilots depends on (n, i). We have
omitted this detail in (30) to avoid cluttering notation. Eq. (29)
is solved by

wMMSE
n (i) =

(

ΦLS
n (i)

)

−1
θ

LS
n (i) (31)

with AC-matrix ΦLS
n (i) and CC-vector θ

LS
n (i) given by

ΦLS
n (i)=E

{

ȞLS
n (i)

(

ȞLS
n (i)

)H
}

, θ
LS
n (i)=E

{

ȞLS
n (i)H̃∗

n(i)
}

(32)
Consequently, wMMSE

n (i) is a (Nw × 1)-vector, i.e., Nw pilot
symbols are used to interpolate the channel coefficient at the
n-th subcarrier in the i-th OFDM symbol. The elements of
ΦLS

n (i) and θ
LS
n (i) are given by

[

ΦLS
n (i)

]

x,y
= θf (νx − νy) · θt(µx − µy) + σ2

ηLS(x − y) (33)
[

θ
LS
n (i)

]

x
= θf (νx − n) · θt(µx − i) (34)

σ2
ηLS(x−y)=

δx−y

|dνx
(µx)|2

(

σ2
h̃

+
σ2

n

N

N−1
∑

k=0

‖w(k)‖2

)

(35)

The MMSE channel estimate is finally given by

ĤMMSE
n (i) =

(

wMMSE
n (i)

)H
ȞLS

n (i) . (36)

V. MAXIMUM RATIO COMBINING RECEIVER

Based on (4) it is possible to perform demodulation fol-
lowed by decoding. To this end, all antennas of the linear
antenna array are used to generate the POR. However, the
more antennas are employed the less the outer antennas are
correlated. Hence, linearly combining these signals is actually
an averaging process reducing the effective SNR. The authors
of [4] propose to compute several PORs from a linear antenna
array using all available Nr antennas. We present a variant
of this idea and propose to compute Nr − 1 PORs. These
PORs run between all pairs of neighboring antennas. As a
result we are avoiding unneccessary signal correlations which
is beneficial for the subsequent maximum ratio combining.
Let us assume that the p-th POR lies between the p-th and the
(p + 1)-th antenna with 0 ≤ p ≤ Nr − 2. The received signal
in frequency domain at the p-th POR reads

r̃n,p(i) = H̃n,p(i) · dn(i) + ζn,p(i) + η̃n,p(i) (37)

Maximum ratio combining of all PORs yields

ρn(i) =

∑Nr−2
p=0

(

ĤLS/MMSE
n,p (i)

)

∗

r̃n,p(i)
∑Nr−2

p=0 |ĤLS/MMSE
n,p (i)|2

(38)

If we assume that the channel estimates are perfect, we can
approximate (38) by an equivalent AWGN channel

ρn(i) ≈ dn(i) + η(ρ)
n (i) . (39)

The noise term η
(ρ)
n (i) is assumed to be zero-mean AWGN

with variance

E

{

∣

∣

∣
η(ρ)

n (i)
∣

∣

∣

2
}

=
σ2

ζ + σ2
η̃

∑Nr−2
p=0 |ĤLS/MMSE

n,p (i)|2
. (40)

Please note that the variance of η
(ρ)
n (i) differs with subcarrier

index n and OFDM symbol index i. Based on (39) we
perform APP-demodulation followed by deinterleaving and
VA decoding.



VI. SIMULATION RESULTS

We present results for the WSSUS channel model with
Jakes’ Doppler spectrum and uniformly distributed power
delay profile of length L. For the OFDM system we chose
HIPERLAN parameters, i.e., N = 64 subcarriers and Ng = 16
guard taps. The common (133, 171)8 convolutional code with
a block length of 104 information bits was applied. The
interpolation point P was chosen such that (10) yielded a
minimum for a fixed antenna distance.

a) Least Square Channel Estimation: In Fig. 2 BER
measurements are shown for a small Doppler frequency (γ =
0.05) and strong frequency selctivity (L = 10). Based on
Fig. 1 two different antenna delays (D = 64, 128) were
examined. Comparing the two and eight antenna case reveals
that the antenna spacing has a more severe effect on the
eight antenna case. All modulation forms are improving if
the number of antennas as well as their distance is increased.
A diversity effect is visible in both cases. It is also evident
that differential QPSK suffers extremely due to the frequency
selective conditions. The superiority of the coherent over the
noncoherent approach is obvious for QPSK and 16QAM.
Let us turn to the fast Doppler case in Fig. 3. Unlike the small
Doppler case we have to ensure a narrow antenna spacing.
Otherwise the signals will be only loosely correlated, resulting
in an unsatisfying BER floor. Please note that the single
antenna case with perfect CSI ends in an error floor. Like in a
practical OFDM receiver we equalized the received symbols
on the basis of the mean channel impulse response, hence, ICI
leads to an error floor.

b) MMSE Channel Estimation: Fig. 4 compares the per-
formance of the interpolation approach against single antenna
reception for a scattered pilot scheme. The cut-off frequency
for critcal sampling the channel lies at γ ≈ 0.094. Closing
in on this frequency the BER of single antenna reception
soon deteriorates, whereas the interpolating receiver still yields
satisfying results.

VII. CONCLUSION

We presented two channel estimators for spatially inter-
polated coherent OFDM and demonstrated its higher perfor-
mance against the noncoherent counterpart. We have seen
that a smaller antenna spacing not necessarily improves the
resulting BER performance. In fact, only large Doppler ben-
efits from a narrow antenna spacing, whereas small Doppler
frequency are better dealt with by larger antenna spacings.
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