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Abstract— Differential phase shift keying (DPSK) is
an attractive modulation scheme in connection with
OFDM as it circumvents channel estimation. How-
ever, it relies on strong correlation between adjacent
symbols and is thus limited to those channels which
exhibit either low frequency or low time selectivity.
Based on previous works for the iterative improvement
of DPSK in a broadband single-carrier context we
present a turbo-receiver which exploits the concate-
nation of convolutional code, interleaver and DPSK
modulation in a multi-carrier setting. We will show
that our receiver provides vast improvements over
simple differential demodulation with a performance
close to or even surpassing standard coherent OFDM
with MMSE channel estimation.

Index Terms— Noncoherent Turbo-Detection, DPSK

I. I NTRODUCTION

M ULTIPLE symbol differential detection
(MSDD) [1] is commonly known as a

means to improve the performance of DPSK. The
basic idea is to extend the observation interval
from two symbols as in conventional differential
demodulation to a larger number of symbols.
Within this extended interval a maximum-likelihood
detection is performed. A number of recent papers
brought this scheme into a turbo environment, e.g.
in [2] linear prediction facilitates the implementation
of approximate MAP-demodulation of DPSK. In
[3] a similar receiver is developed for AWGN. Both
these schemes are based on the application of an
extended observation interval. In [4] this philosophy
leads to a modified BCJR algorithm [5] whose
metric follows directly from the joint probability
of receive signal and transmit data and which is
designed for minimum-shift keying modulation.
While these papers consider single carrier systems,
this paper expands the ideas of [2], [3], [4] to
OFDM with bit-interleaved convolutionally coded
M -DPSK. Thereby our motivation is on the one
hand to avoid explicit channel estimation and on the

other hand to excel the performance of conventional
differential detection of DPSK.
The paper is organized as follows. Section II
describes the system model, Section III details the
APP demodulation and the receiver’s Turbo loop.
Simulation results are presented in Section IV.
Conclusions are given in Section V.

II. SYSTEM MODEL

Notation: Boldface lower-case characters denote
vectors, e.g,xb

a = [xb, xb−1, · · · , xa]
T, and boldface

upper-case characters denote matrices, e.g,X. The
operatorD{x} placesx on a diagonal matrix,[X]a,b

denotes a matrix element in thea-th row andb-th
column, and J0(·) denotes the0-th order modified
Bessel function.
Throughout the paper we will consider differential
modulation in frequency direction in order to enable
demodulation on a per-OFDM-symbol-basis. Thus,
for the following derivations we will omit an extra
OFDM symbol index.
Fig. 1 depicts our transmitter. Independent identi-
cally-distributed information bitsbi ∈ {0, 1} are
convolutionally encoded (CC) yielding code bits
cj . The randomly bit-interleaved sequencecj′ is
mapped onto M -ary DPSK symbols ∆dn ∈
{exp(j2πξ/M), ξ = 0, · · · , M − 1}, which are
differentially encoded according to the rule

dn = ∆dn · dn−1 (1)

i.e., we chose to perform differential encoding in
frequency direction. The block ”reference symbols”
provides the periodical initialization of the differen-
tial encoding process. An OFDM symbol in complex
baseband notation is transformed into time domain
by the IDFT

xk =
1√
N

N−1
∑

ν=0

dνej2πνk/N ,−NG ≤ k ≤ N−1, (2)
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Fig. 1. OFDM transmitter

where NG denotes the length of the cyclic prefix
and N the number of subcarriers. Please note that
xk for −NG ≤ k ≤ −1 represents the cyclic prefix
taken from the trailing end of the respective OFDM
symbol.
The transmit signalxk passes through a WSSUS
time-variant multipath channel with impulse reponse
hℓ,k (cf. [6]) and is superimposed by additive white
Gaussian noise (AWGN)wk with one-sided noise
power spectral densityN0. The received signal in
time domain is thus denoted as

yk =
L−1
∑

ℓ=0

hℓ,kxk−ℓ + wk, (3)

whereL denotes the length of the channel impulse
response. After removing the cyclic prefix and after
discrete Fourier-transform the received OFDM sym-
bol in the frequency domain is given by

rn =
1√
N

N−1
∑

k=0

yke−j2πkn/N . (4)

For slowly time-varying channels this approach
yields the most attractive property of OFDM,
namely, the transformation of a multipath channel
into a set of parallel flat-fading channels. Rapidly
varying channels however lead to a loss of orthogo-
nality and introduce intercarrier interference (ICI).
Following the exposition in [7] we take ICI into
account by modeling it as an additional noise term.
Eq. (4) reads

rn =
N−1
∑

ν=0

L−1
∑

ℓ=0

dνHℓ,ν−ne−j2πνℓ/N + ηn (5)

with

Hℓ,ν−n =
1

N

N−1
∑

k=0

hℓ,kej2πk(ν−n)/N (6)

and ηn for the DFT of the noise termwk. Eq. (5)
can be separated into a useful signal contribution,
ICI and AWGN

rn = H̃ndn + w̃n, (7)

where
w̃n = cn + ηn, (8)

H̃n =
L−1
∑

ℓ=0

Hℓ,0e−j2πnℓ/N , (9)

cn =
∑

ν 6=n

L−1
∑

ℓ=0

dνHℓ,ν−ne−j2πνℓ/N . (10)

The ICI term cn is assumed to be uncorrelated to
the additive noise and to be distributed zero-mean
Gaussian with variance (cf. [7, (10)])

σ2
ICI = 1 − 1

N2

N−1
∑

k=0

N−1
∑

k′=0

J0
(

2πfD,maxTs/N(k − k′)
)

(11)
which holds for Jakes’ Doppler spectrum with maxi-
mum Dopppler frequencyfD,max and the OFDM core
symbol durationTs. Thus,w̃n ∼ CN (0, σ2

ICI + σ2
w)

holds for the sum of ICI and AWGN. Let us further
define the autocorrelation function

ϕH̃H̃(λ)
∆
= E{H̃nH̃∗

n+λ} = (1 − σ2
ICI)

L−1
∑

ℓ=0

σ2
ℓ e

−j2πλ

N

(12)

with the ℓ-th path gainσ2
ℓ .

III. APP DEMODULATION OF M -DPSK

An APP demodulator basically needs to compute
soft values for the coded and interleaved bitscj′

L(cj′) = log

∑

∀∆dn(cj′=0)

Pr
(

∆dn|rN−1
0

)

∑

∀∆dn(cj′=1)

Pr
(

∆dn|rN−1
0

) . (13)

Following the BCJR philosophy will render (13)
into a computationally feasible expression. That ap-
proach was taken in [4]. Let us state the basic results.
From (13) it is obvious that the main objective for
an APP demodulator of DPSK is the computation
of the a posteriori probability (APP) Pr

(

∆dn|rN−1
0

)

.
Applying Bayes’ rule this APP can be expressed as
Pr

(

∆dn|rN−1
0

)

= p
(

∆dn, rN−1
0

)

/p
(

r
N−1
0

)

. Thus,
the core of APP demodulation of DPSK is the
computation of the joint probabilityp

(

∆dn, rN−1
0

)

,
which is well known from maximum a posteriori
(MAP) decoding [5].
Let us first interprete the DPSK modulator as a trellis



encoder with a certain number of states and transi-
tions. This trellis structure is purely artifical, i.e.,
the DPSK modulator remains a rate one recursive
code, but the interpretation enables the expression
of p

(

∆dn, rN−1
0

)

in terms of state transitions

p
(

∆dn, rN−1
0

)

=
∑

(s′,s)→∆dn

p(sn = s′, sn+1 = s, rN−1
0 ).

(14)
In Eq. (14) the joint probability on the left hand
side is expressed in terms of those state transitions
(s′, s) from state sn = s′ to sn + 1 = s that
belong to the considered differential transmit sym-
bol ∆dn. For the following we will use the short
hand notationp(s′, s, rN−1

0 ) = p(sn = s′, sn+1 =
s, rN−1

0 ). Repeatedly applying Bayes’ rule leads to
the computation ofp(sn = s′, sn+1 = s, rN−1

0 ) in a
forward-backward manner, i.e.,

p(s′, s, rN−1
0 )=αn(s′)γn(s′, s)βn+1(s), (15)

where the forward probabilityαn(s′), the transition
probability γn(s′, s) and the backward probability
βn+1(s) were introduced given by

αn(s′) = p(s′, rn−1
0 ), (16)

γn(s′, s) = p(rn|s′, s, rn−1
0 )Pr(s|s′), (17)

βn+1(s) = p(rN
n+1|s, rn

0 ). (18)

This approach becomes feasible due to the recursive
update of the forward and backward probabilities

αn+1(s) =
∑

∀s′→∆dn

αn(s′)γn(s′, s), (19)

βn(s′) =
∑

∀s→∆dn

βn+1(s)γn(s′, s). (20)

To actually compute these probabilities knowledge
about the transition probability is required. Therefore
we introduce

p(rn|s′, s, rn−1
0 ) =

p(rn
0 |s′, s)

p(rn−1
0 |s′, s)

(21)

Recall that in Sec. II a subcarrier was described as
being distorted by AWGN as well as ICI which was
modeled by a zero-mean Gaussian distributed pro-
cess. Hence, we can invoke the multivariate Gaussian
distribution

p(rn
0 |s′, s) =

exp
(

−(rn
0 )H

C
−1
rr [n]rn

0

)

πn+1|Crr[n]| , (22)

whereCrr[n] = E{rn
0 (rn

0 )H|s′, s}. Let

r
n
0 = D{dn

0} · H̃n
0 + w̃

n
0 , (23)

then the covariance matrix forrn
0 for M -DPSK is

given by

Crr[n] = D{dn
0}

(

E{H̃n
0 (H̃n

0 )H} + σ2
w̃I

)

D{dn
0}H

(24)
Inspection of Eq. (24) reveals that the determinant of
Crr[n] is independent of the transmitted data. Thus,
replacing (22) in (21) yields

p(rn|s′, s, rn−1
0 )∝ exp

(

−(rn
0 )H

C
−1
rr [n]rn

0

)

exp
(

−r
n−1
0 )HC

−1
rr [n − 1]rn−1

0

)

(25)
A direct implementation of Eq. (25) faces one
significant problem. With increasingn the number
of hypotheses and likewise the number of states
increase, i.e., Eq. (25) entails a time-variant trellis. A
remedy for this problem is inspired by the multiple-
symbol detection approach ofM -DPSK [1]. An
observation interval is introduced, i.e., in Eq. (25) the
conditioning on the total sequencern−1

0 from 0 up
until n−1 is replaced by the conditioning onrn−1

n−Z+1
which takes into account symbols fromn − Z + 1
up to n − 1 yielding an approximation for the true
conditional probability

p(rn|s′, s, rn−1
0 ) ≈ p(rn|s′, s, rn−1

n−Z+1). (26)

This approach eventually leads to approximate APPs
in (14), however, iteratively including extrinsic in-
formation from the decoder will make up for this
loss. The approximate conditional probability reads
(cf. [4])

p(rn|s′, s, rn−1
n−Z+1) ∝

exp
(

−(rn
n−Z+1)

H
C̃

−1
rr [n]rn

n−Z+1

)

exp
(

−(rn−1
n−Z+1)

HC̃
−1
rr [n − 1]rn−1

n−Z+1

) . (27)

The covariance matrices are given by

C̃rr[n] = E
{

r
n
n−Z+1(r

n
n−Z+1)

H|s′, s
}

,

= D{dn
n−Z+1}CZD{dn

n−Z+1}H
(28)

and

C̃rr[n − 1] = E
{

r
n−1
n−Z+1(r

n−1
n−Z+1)

H|s′, s
}

(29)

= D{dn−1
n−Z+1}CZ-1×Z-1D{dn−1

n−Z+1}H

with the definitions

CZ = E{H̃n
n−Z+1(H̃

n
n−Z+1)

H} + σ2
w̃I,(30)

CZ-1×Z-1 = E{H̃n--1
n--Z+1(H̃

n--1
n--Z+1)

H} + σ2
w̃I. (31)

The elements of the autocorrelation matrices are
given by (12), i.e., [CZ ]µν = [CZ-1×Z-1]µν =



ϕH̃H̃(µ−ν)+σ2
w̃δµ−ν . In order to reduce the number

of necessary computations in (27) we define

T = −C
−1
Z +







0 . . . 0
...
0 C

−1
Z−1×Z−1






(32)

to eventually express (27) in the following quadratic
form

log p(rn|s′, s, rn−1
n−Z+1) ∝ (33)

(rn
n−Z+1)

HD{dn
n−Z+1}TD{dn

n−Z+1}H
r
n
n−Z+1.

Noticing thatdn−bd
∗
n−a=

a−1
∏

j=b

∆dn−j and with tµν
∆
=

[T]µν , (33) is expressed in scalar notation as

log p(rn|s′, s, rn−1
n−Z+1) ∝ (34)

2 · Re







Z−1
∑

µ=0

Z−1
∑

ν=µ+1

tµνr
∗
n−µrn−ν

ν−1
∏

j=µ

∆dn−j







.

Eq. (34) reveals the actual state and transition def-
initions. Statesn−1 = s′ is associated with the
hypothesis∆d

n−1
n−Z+2, whereas the state transition

(s′, s) is described by the hypothesis for the actually
transmitted differential symbol∆dn.
Upon the recursive update of (19) and (20) using
(34) we can compute (15) and arrive eventually at
the soft values in (13). The extrinsic information for
the differentially demodulated code bits is computed
straightforwardly and after deinterleaving is fed into
a standard BCJR decoder which decodes the convo-
lutionally encoded bits. The extrinsic information of
the code bits after decoding can then serve as a priori
information in the next iterations.

IV. SIMULATION RESULTS

Results in terms of BER simulations are pre-
sented for the WSSUS-channel with uniformly
distributed power delay profile (channel taps
L = 3, 10) and with Jakes’ Doppler spec-
trum (normalized maximum Doppler frequencies
fD,maxTs = 0.01, 0.2) corresponding to lowly/highly
time/frequency-selective channels. The standard
convolutional code(133, 171)8 with random bit-
interleaving and a block length of104 information
bits is applied. Our OFDM system usesN = 64
subcarriers andNG = 16 guard taps.
For a reference we simulated the coherent case with
QPSK and perfect channel state information (CSI)
with linear equalization (LE) and Viterbi decoding.
The corresponding curves are marked as ’LE (ZF),
perfect CSI’ for zero-forcing equalization and ’LE

(MMSE), perfect CSI’ for MMSE equalization. Ad-
ditionally we inserted simulation results for con-
ventional differential demodulation, which bases the
demodulation on two adjacent symbols. Decoding is
again accomplished by the Viterbi algorithm. That
case is marked by ’CDD’.
The performance of the Turbo receiver in Sec. III
is marked either ’noncoh. Turbo APP (Gray)’ for
a Gray-mapped QDPSK or ’noncoh. Turbo APP
(aGray)’ for an anti-Gray-mapped QDPSK. Three
iterations are performed. An observation interval of
Z = 5 was chosen resulting in64 states for the
APP-demodulator. We added the case of a coherent
OFDM system with channel estimation, i.e., fol-
lowing [8] several pilot symbols, which are known
to the receiver, are distributed in the OFDM time-
frequency grid. The pilots were spaced apart 3
symbols in frequency direction and 2 symbols in
time direction. A 2-dimensional Wiener filter with
20 coefficients was implemented [8]. After estimat-
ing the channel at the pilot positions a subsequent
interpolation based on the channel correlations yields
the channel’s transfer functions for all subcarriers.
For this case we applied QPSK with an anti-Gray
mapping. The Turbo loop is established between
an optimal APP-demodulator and the BCJR-decoder
for the convolutional code. Three iterations were
performed, too. The curves are marked by ’coh.
Turbo APP’.
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Fig. 2. Low time, low frequency selectivity, i.e.,fD,maxTs =

0.01, L = 3 channel taps

In case of low time-selective channels (cf. Fig. 2,3)
the coherent Turbo receiver is able to make up for
the non-ideal channel estimation and can achieve
the performance of the receiver which has per-
fect CSI. Thenoncoherent Turbo receiver achieves
considerable gains against conventional differential
demodulation but still leaves a gap to the perfect



CSI case of≈ 0.5dB@10−4 for L = 3 and of
≈ 1.2dB@10−5 for L = 10.
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Fig. 3. Low time, high frequency selectivity, i.e.,fD,maxTs =

0.01, L = 10 channel taps

The situation becomes quite different for the rapidly
changing channels. The normalized Doppler fre-
quencyfD,maxTs = 0.2 leads to rapid channel varia-
tions which can not be reliably tracked by the pilot-
aided channel estimator, i.e., the channel estimation
fails due to a violation of the sampling theorem
necessitating a denser pilot-grid. Fig. 4, 5 illustrate
that the coherent Turbo receiver can only achieve a
lowering of the error-floor.
On the other hand, for the rapidly fading but lowly
frequency-selective channel the noncoherent Turbo
receiver (Fig. 4) is able to almost achieve the per-
formance of the perfect CSI case before it ends in
an error-floor. Still at the highly frequency-selective
channel the noncoherent Turbo receiver proves to be
more robust than the coherent approach.
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Fig. 4. High time, low frequency selectivity, i.e.,fD,maxTs =

0.2, L = 3 channel taps
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Fig. 5. High time, high frequency selectivity, i.e.,fD,maxTs =

0.2, L = 10 channel taps

V. CONCLUSION

We have successfully applied a modified BCJR
algorithm [4] to the APP-demodulation ofM -DPSK
in an OFDM environment. We have shown the nec-
essary changes for the BCJR demodulator. We have
demonstrated that unlike coherent Turbo reception
the noncoherent Turbo receiver proved to be robust
for all considered channel conditions. As a final note
let us mention that our noncoherent receiver achieves
a lower error-floor with anti-Gray mapping whereas
Gray-mapping results in an earlier beginning of the
water-fall region.
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