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Abstract This paper analyzes the convergence behavior and performance of it-
erative successive interference cancellation (SIC) for a CDMA system
with random spreading using the so-called multi-user efficiency (MUE).
The goal of such an analysis is the optimization of the detection scheme.
Moreover, an optimized power allocation of the users at the transmitter
is an important means for enhancing the convergence behavior of the
detector and is based on the possibility of prediction. While this analy-
sis has only been applied to parallel interference cancellation (PIC) we
will generalize it in this paper also for SIC. It will be shown that the
achievable system load can be significantly increased.

1. Introduction

The turbo principle discovered in 1993 has been applied to nearly any
concatenated system like channel estimation and equalization, coding
and modulation. It was also applied to parallel and successive interfer-
ence cancellation in a coded CDMA system. Both schemes exploit the
soft information at the channel decoder output for improving interfer-
ence cancellation in an iterative manner. The channel decoder and the
multi-user detection can be regarded as serially concatenated systems.
Analysis of the PIC scheme has been done by different approaches [1-3].
In this case the analysis reduces to a two-dimensional one as will be
described in Section 3. For successive interference cancellation this sim-
plification is not possible because the statistics of the users differ from
each other. In this paper the analysis derived for PIC is generalized to
SIC by taking the dependencies of the users into account. The goal is to
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predict the behavior not only of the whole system but of any particular
user during the iterations.

The paper is organized as follows: Section 2 introduces the system
model of the considered CDMA system. In Section 3 the analysis based
on multi-user efficiency (MUE) is described and applied to the parallel
interference cancellation. The difference between SIC and PIC with
respect to MUE is investigated and the MUE analysis of SIC is given in
Section 4. Power optimization is done in Section 5 for both detection
schemes. A conclusion is given in Section 6.

2. System Model

In order to simplify derivations and notation we assume a synchronous
singel carrier- (SC-) CDMA system with a complex AWGN channel and
pseudo-noise spreading sequences [4], but the analysis can be applied
to MC-CDMA as well. The number of active users is denoted by U .
The information bit vector of the u-th user is denoted by du, which is
encoded with a convolutional code of rate Rc = 1/n identical for all
users. The coded bit sequence is BPSK-modulated and interleaved by
a user-specific interleaver Πu of length L and then spread with random
spreading codes su(k)∈{−1/

√
N,+1/

√
N}. k denotes the chip and l the

symbol index. The length N of the sequences su(k) is called spreading
factor and the system load β = U/N is an important parameter of the
system. Assuming b(l) to be the vector comprising BPSK symbols of all
users at time instance l and C(l) a N×U matrix containing the vectors of
spreading sequences as columns each multiplied with an individual phase
term of the channel, the received vector containing the superposition of
the spread signals of all users and the noise can be described in vector-
matrix notation

y(k) = C(l)b(l) + n(k) . (1)

The vector n(k) represents the complex additive white Gaussian noise
with covariance matrix σ2

n I. At the receiver a bank of matched filters
(MF) is applied for despreading and the real-valued matched filter output
can be written as

r = Re
{
CHy

}
= Re

{
CHC

}

︸ ︷︷ ︸

R

b + Re
{
CHn

}

︸ ︷︷ ︸

ñ

. (2)

For notational simplicity the time index k has been dropped. The off-
diagonal elements of R contain the real part of the correlation coef-
ficients %ij = Re {ρij} between the i-th and the j-th user’s signature
sequence with E{|ρij |} = 1/N . Detection by individual decoding and
hard decision will not be appropriate for systems with moderate to high
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loaded systems, since the multi-user interference degrades the perfor-
mance significantly. Considerable improvement can be obtained by the
application of interference cancellation. The idea of interference cancel-
lation schemes is to estimate the interference and remove it from the
received signal before detection.

3. Multi-User Efficiency

The structure of the parallel interference cancelers is depicted in Fig-
ure 1. The channel decoding is realized by a Max-Log-MAP decoder

PSfrag replacements

y(k)

BPSK

Π1
Π−1

1

Π−1

2

Π−1

U

Π2

ΠUDec

Dec

Dec
Le(b1)

Le(b2)

Le(bU )b̃U

b̃1

b̃2

MF IC

tanh

tanh

tanh

Figure 1. Receiver structure of PIC

deriving approximated extrinsic log-likelihood-ratios Le(bu). The soft
estimates of the coded symbols b̄ are calculated as b̄ = tanh(Le/2).
The signal-to-interference-plus-noise-ratio (SINR) of each branch is rel-
evant for the quality of the interference cancellation. It is defined as
SINR = 2σ2

d/(σ2
n +σ2

MUI) and is equal to the SNR = 2Es/N0 in the case
of perfect interference cancellation which is equivalent to the single-user
bound (SUB). σ2

d is the variance of the desired signal and σ2
MUI is the

variance of the remaining multi-user interference after cancellation which
can be calculated as σ2

MUI = σ2
d · µ(U − 1)/N . µ = E{|b̄ − b|2} is the

remaining mean squared error of the estimated symbols after decoding
which is approximately the same for each user in the case of PIC. The
ratio of SINR and SNR is called multi-user efficiency (MUE) and is de-
noted by η [2]. If η is equal to one there is no loss compared to the SUB
and therefore this case describes perfect interference cancellation. For
the large system limit (N,U → ∞) (U − 1)/N ≈ U/N = β, η can be
written as

η =
SINR

SNR
=

2σ2
d/(σ

2
n + σ2

MUI)

2σ2
d
/σ2

n

=
1

1 + βµEs/N0
. (3)
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The parameter η can be used to visualize and predict the behavior of the
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Figure 2. Predicted transfer function and simulated trajectory for PIC, N = 8,
U = 16, Eb/N0 = 6 dB (a) and N = 8, U = 24, Eb/N0 = 5 dB (b)

iterative detection. In the first step, we have the matched filter outputs
without a-priori information from the channel decoder. The variance µ is
therefore equal to 1 and the MUE becomes η(1) = 1/(1+βEs/N0). After
simultaneously decoding all users, soft estimates b̄ of the transmitted
symbols are obtained which are used in the next iteration for interference
cancellation. Since channel decoding is generally a nonlinear process µ
cannot be calculated analytically, but has to be predetermined. The
output error µ(m) of the decoder in the m-th iteration depends on the
SINR at the input

µ(m) = g (SINR) = g
(

η(m−1)SNR
)

(4)

and therefore on the MUE of the previous iteration η(m−1). Because
η(m) depends itself on µ(m) the behavior of the PIC at iteration m can
be described by η(m) = f

(
η(m−1)

)
. This function is illustrated in a

two-dimensional plot in Figure 2(a). The transfer function describes the
theoretical behavior and the trajectory the measured values during sim-
ulation. The detection starts in the lower left corner and tends to the
upper right corner. This point corresponding to η = 1 describes perfect
interference cancellation. It can be seen that the behavior can be pre-
dicted very precisely. This plot corresponds to a system with a spreading
factor N = 8, U = 16 users, an Eb/N0 of 6 dB and a convolutional code
with generator polynomials [7 5]8 in octal representation. This system
will converge to the SUB within 6 iterations. In Figure 2(b) a system
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with load of 3 and Eb/N0 = 5 dB is depicted. There is an intersection
between the transfer function and the bisecting line so the detection gets
stuck at η ≈ 0.2.

4. Analysis of Successive Interference
Cancellation

The structure of successive interference cancellation is shown in Figure
3. The prediction in the same manner as for PIC is not possible. While
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Figure 3. Receiver structure of SIC

for PIC the error variance µ is the same for all users in the large system
limit, this is not the case for SIC. The U users have different variances

µ
(m)
u at each iteration m. The remaining errors of the users are assumed

to be independent. So a simple addition of their variances weighted with
the corresponding correlation coefficient can be applied for calculating
the resulting interference on the desired user signal. For that reason the
MUE can be calculated by

η(m)
u =

1

1 + 1
N

(
∑u−1

i=1 µ
(m)
i +

∑U
i=u+1 µ

(m−1)
i

)

Es/N0

(5)

To show how good the prediction works, Figure 4 depicts the predicted
and the simulated trajectories for the same system parameters as in
Fig. 2(a) in one diagram per user. It can be seen that the prediction
works well also in the successive interference cancellation case. A simple
transfer function as shown in Fig. 2(a) cannot be drawn in these plots
since the transfer function differs for each user and each iteration due to
being conditioned on the current state of all the other users. In order
to avoid a very complex diagram only the trajectories are depicted in
Figure 4.
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Figure 4. Predicted and simulated trajectories for SIC, N = 8, U = 16 and Eb/N0 =
6 dB

5. Power distribution optimization

Up to now analysis was based on uniformly distributed powers of the
users. To describe an unequal power distribution by multi-user efficiency,
a way to calculate a kind of average efficiency is necessary. So far the
transfer characteristic was calculated by simply averaging over all users.
For an average MUE in the case of different powers the individual µ’s
have to be obtained and combined. The error variance µ is defined as the
residual symbol interference independent of the received power. But the
impact of this error on other users’ detection is indeed dependent on the
receive power which is denoted as Pu. This fact is taken into account
by weighting µu with this user’s received power. Thus the resulting
multi-user efficiency can be calculated more generally as

ηu =
1

1 + Ēs

N0

1
N

∑

v 6=u µv · Pv

,
∑

v

Pv = U . (6)

Ēs/N0 is now defined as an average value over all users in order to get an
appropriate criterion for fair comparison with the equal power case. µu

depends on the SINR at the input of the decoder and is for that reason
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itself dependent on Pu :

µu = g(SINR) = g

(

η
Ēs

N0
Pu

)

(7)

The criterion for convergence is still reaching the point of η = 1 after
an finite number of iterations. For the PIC this is fulfilled if f(η) >

η , η∈[0, 1]. The number of iterations needed depends on the width of
the tunnel. Whether the tunnel is open or not depends also on the power
distribution. For PIC it turns out that equal power for all users is not
the best choice, as presented e.g. in [1] and [5].
In this paper optimization is solved by means of differential evolution

[6]. Especially in the case of SIC there exist many local optima in the
cost function (multimodal function). For local optimization techniques
a starting point is needed, which is already near to the global optimum.
A better approach is a global optimization, especially algorithms moti-
vated by evolution do not need any knowledge of the searching area.
The main difference between local search algorithms and evolutionary
techniques is that instead of a single point a set of points called popula-
tion is regarded at each time instance. Evolutionary algorithms combine
elements of the current population and compare the generated children
with the parents. If the child has a lower cost than the parents it will
replace one parent. There exist many algorithms motivated by evolution-
ary processes, but differential evolution has the advantage of converging
faster in the neighborhood of the optimal solution due to an adaptive
step size. The optimization problem for PIC can be described by

minimize
︸ ︷︷ ︸

P1,..,PU

∑

u

Pu s. t.

{

f(η) > η (+ ε) , η∈[0; 1]

Pu > 0 ∀ u
(8)

By ε the width of the tunnel can be increased in order to decrease the
number of iterations at the cost of higher transmit power.
For the SIC a similar expression for the first condition cannot be given.
A more general condition for convergence used for SIC is to reach η = 1
after an finite number of iteration. The starting population is generated
randomly and should be sufficiently large for a high diversity. The
performance improvement by power optimization is illustrated in Fig-
ure 5(a) where the transfer functions for a system with load β = 4 at
Eb/N0 = 6.5 dB with equal and optimized power distribution are shown.
For equal powers it will get stuck at η ≈ 0.1 which is a loss of about
10 dB compared to the SUB whereas optimized power levels enable the
detection to converge to the SUB. With equal powers only a load of ≈ 3
is possible. In Figure 5(b) it is shown that the weakest user has only a
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Figure 5. Transfer characteristic (a) and power profile (b) of optimized PIC at
Eb/N0 = 6.5 dB
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Figure 6. Trajectory (a) and power profile (b) of optimized SIC at Eb/N0 = 6.5 dB

loss of 2.5 dB compared to the equal power case, so the gain is 7.5 dB.
In Fig. 6(a) a trajectory for optimized SIC is depicted; Figure 6(b)
shows the corresponding power profile. For the same system the results
are nearly the same. If the tunnel of the transfer function is very nar-
row, the differences of the users are small and the SIC behaves more and
more like the PIC. For that reason the optimized power levels are nearly
the same, but the convergence speed is higher for SIC. To achieve an
efficiency of η = 0.98 the PIC needs for this example 53 iterations, the
SIC only 35.
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6. Conclusion

In this paper, an analysis of iterative successive interference cancel-
lation based on multi-user efficiency was presented. The quality of pre-
diction is as good as for the PIC; only the graphical representation is
not so simple and obvious. Unequal power distribution leads to signifi-
cantly better performance. For PIC and SIC optimization of the power
distribution was carried out by differential evolution. It was based on
the prediction of convergence. It was shown that the system load could
be significantly increased by the use of an optimized power profile.
Future work will adapt the constraints for the optimization to more real-
istic scenarios by e.g. individual power constraints or maximum number
of iterations. This additional constraints are at the cost of maximum
system load or overall received power.
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