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Abstract

This paper introduces an optimization of the received power profile for iterative parallel and successive interference
cancellation (PIC/SIC) in coded CDMA systems. The basic approach is an optimization algorithm called Differential
Evolution (DE). An optimized power allocation of the users at the transmitter is an important means for enhancing
the convergence behavior of the detector. Either the supportable load can be significantly increased or the required
transmit power is decreased by several dB. Furthermore any additional constraint regarding the modelling of realistic
communication systems can be implemented very easily. In this paper the number of needed iterations is dramatically
decreased. Computational complexity is reduced while the needed power is barely increased. Another constraint
which is also considered is the near-far-effect that degenerates system performance. The maximum received power
is limited for some users that are assumed to be at the cell border or who suffer from fading. The precondition for
this optimization is the analysis of the iterative detection scheme. This is done by a parameter called multi-user
efficiency (MUE).

1 Introduction

The turbo principle discovered in 1993 has been applied
to nearly any concatenated system like channel estima-
tion and equalization, coding and modulation. It was
also employed for parallel and successive interference
cancellation in a coded CDMA system. Both schemes
exploit the soft information at the channel decoder
output for improving interference cancellation in an
iterative manner. The channel decoder and the multi-
user detection can be regarded as serially concatenated
systems. Analysis of the PIC scheme has been done
by different approaches [1-3] and the possibility of
power profile optimization has been shown in [4].
For successive interference cancellation the analysis is
more difficult because the statistics of the users differ
from each other. The generalization of the analysis to
SIC and the basics of power profile optimization were
presented in [5]. This tool is applied here under more
realistic assumptions. To limit computational complex-
ity for implementation aspects the power profile is
optimized under the constraint of maximum number
of iterations. Another problem that was not considered
so far is the individual power constraint for particular
users. In a cellular network system performance suffers
from near-far-effects so it may be impossible to provide
the allocated receive power for some users.

The paper is organized as follows: Section 2 in-

troduces the system model of the considered CDMA
system. In Section 3 the analysis based on multi-user
efficiency (MUE) [2] is described and applied to the
parallel interference cancellation. The difference be-
tween SIC and PIC with respect to MUE is investigated
and the MUE analysis of SIC is given in Section 4.
Power profile optimization is introduced in Section
5 for both detection schemes. The implementation of
the additional constraints is discussed in Section 6. A
conclusion is given in Section 7.

2 System Model
In order to simplify derivations and notation we assume
a synchronous single carrier- (SC-) CDMA system with
a complex AWGN channel and pseudo-noise spreading
sequences [6]. The number of active users is denoted
by U . The information bit vector of the u-th user
is denoted by du, which is encoded by a convolu-
tional code of rate Rc = 1/2 that is identical for
all users. The coded bit sequence is BPSK-modulated
and interleaved by a user-specific random interleaver
Πu of length L. Finally the signals are spread with
random spreading codes su(k)∈{−1/

√
N, +1/

√
N}.

k denotes the chip and l the symbol index. The length
N of the sequences su(k) is called spreading factor and
β = U/N denotes the system load. b is assumed to be
the vector comprising BPSK symbols of all users at a
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particular time instance and C is the N ×U spreading
matrix. It contains the vectors of spreading sequences
as columns each multiplied with an individual phase
term of the channel. The received vector containing
the superposition of the spread signals of all users and
the noise can be described in vector-matrix notation,
yielding

y = Cb + n . (1)

For notational simplicity time indices have been
dropped. The vector n represents the complex additive
white Gaussian noise with covariance matrix σ2

n I. At
the receiver a bank of matched filters (MF) is applied
for despreading and the real-valued matched filter out-
put can be written as

r = Re
{
CHy

}
= Re

{
CHC

}

︸ ︷︷ ︸

R

b + Re
{
CHn

}

︸ ︷︷ ︸

ñ

. (2)

The elements of R contain the real part of the corre-
lation coefficients %ij = Re {ρij} between the i-th and
the j-th user’s signature sequence with E{|ρij |}i 6=j =
1/N . The multi-user interference characterized by these
correlation coefficients degrades the performance sig-
nificantly even for moderate system loads if individual
decoding and hard decision is applied to these matched
filter outputs. Interference cancellation techniques are
able to improve performance significantly by estimating
the multi-user interference and cancelling it before
detection. Additional gain is achieved by iterative struc-
tures.

3 Multi-User Efficiency
Figure 1 shows the structure of a parallel interference
canceller. In order to get at least approximated extrinsic
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Fig. 1. Receiver structure of PIC

log-likelihood-ratios Le(bu) at low computational cost,
the Max-Log-MAP channel decoder is applied. The soft
estimates of the coded symbols b̄ are calculated as b̄ =
tanh(Le/2). The signal-to-interference-plus-noise-ratio
(SINR) of each branch is a parameter indicating the
quality of the interference cancellation and is defined
as SINR = 2σ2

d/(σ2
n +σ2

MUI). It is equal to the SNR =
2Es/N0 in the case of perfect interference cancellation

which is equivalent to the single-user bound (SUB).
σ2

d and σ2
MUI describe the variance of the desired

signal and of the remaining multi-user interference after
cancellation respectively. The latter can be calculated as
σ2

MUI = σ2
d ·µ(U−1)/N . The remaining mean squared

error of the estimated symbols after decoding is denoted
as µ = E{|b̄ − b|2} which is approximately the same
for each user in the case of PIC. The ratio of SINR
and SNR is called multi-user efficiency (MUE) and is
denoted by η [2]. Perfect interference cancellation is
indicated by η = 1 and therefore describes the case
with no loss compared to the SUB. For the large system
limit (N, U → ∞) (U − 1)/N ≈ U/N = β, η can be
written as

η =
SINR
SNR

=
2σ2

d/(σ2
n + σ2

MUI)

2σ2
d/σ2

n

=
1

1 + βµEs/N0
.

(3)
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Fig. 2. Predicted transfer function and simulated trajectory for PIC,
N = 8, U = 16, Eb/N0 = 6 dB
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Fig. 3. Predicted transfer function and simulated trajectory for PIC,
N = 8, U = 24, Eb/N0 = 5 dB

The parameter η can be used to visualize and predict the
behavior of an iterative detection scheme. In the initial
iteration there is no a-priori information available for
interference cancellation. The soft bits are initialized
with zero, the variance µ is therefore equal to 1 and
the MUE becomes η(1) = 1/(1 + βEs/N0). After
simultaneously decoding all users, soft estimates b̄ of
the transmitted symbols are obtained which are used
in the next iteration for interference cancellation. Since
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channel decoding is generally a nonlinear process µ
cannot be calculated analytically, but has to be prede-
termined. The output error µ(m) of the decoder in the
m-th iteration depends on the SINR at the input

µ(m) = g (SINR) = g
(

η(m−1)SNR
)

(4)

and therefore on the MUE of the previous iteration
η(m−1). Because η(m) itself depends on µ(m) the
behavior of the PIC at iteration m can be described
by η(m) = f

(
η(m−1)

)
. This function is depicted

in a two-dimensional plot in Figure 2. The transfer
function describes the theoretical behavior and the
trajectory gives the measured values during simulation.
The detection starts in the lower left corner and tends
to the upper right corner. This point corresponding to
η = 1 describes perfect interference cancellation. It can
be seen that the behavior is predicted very precisely.
This plot corresponds to a system with a spreading
factor N = 8, U = 16 users, an Eb/N0 of 6 dB
and a convolutional code with generator polynomials
[7, 5]8. This system will converge to the SUB within
6 iterations. In Figure 3 a system with load of 3 and
Eb/N0 = 5 dB is depicted. There is an intersection
between the transfer function and the bisecting line so
the detection gets stuck at η ≈ 0.2.

4 Analysis of Successive
Interference Cancellation

The structure of successive interference cancellation as-
sumed in this paper is shown in Figure 4. The prediction
in the same manner as for PIC is not possible. While
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for PIC the error variance µ is the same for all users in
the large system limit, this is not the case for SIC. The
U users have different variances µ

(m)
u at each iteration

m. The remaining errors of the users are assumed to
be independent. So a simple addition of their variances
weighted with the corresponding correlation coefficient
can be applied for calculating the resulting interference
on the desired user signal. For that reason the MUE
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can be calculated by

η(m)
u =

1

1 +
1

N

(
u−1∑

i=1

µ
(m)
i +

U∑

i=u+1

µ
(m−1)
i

)
Es

N0

.

(5)
To show how good the prediction works, Figure 5 de-
picts the predicted and the simulated trajectories for the
same system parameters as in Figure 2 in one diagram
per user. It can be seen that the prediction works well
also in the successive interference cancellation case. A
simple transfer function as shown in Figure 2 cannot
be drawn in these plots since the transfer function
differs for each user and each iteration due to being
conditioned on the current state of all the other users.
In order to avoid a very complex diagram only the
trajectories are depicted in Figure 5.

5 Power Profile Optimization

5.1 Formulation of the Optimization
Problem

Up to now the analysis was based on uniformly dis-
tributed powers of the users. To describe an unequal
power distribution by multi-user efficiency, a way to
calculate a kind of average efficiency is necessary.
So far the transfer characteristic was calculated by
simply averaging over all users. For an average MUE
in the case of different powers the individual µ’s have
to be combined. The error variance µ is defined as
the residual symbol interference independent of the
received power. But the impact of this error on other
users’ detection is indeed dependent on the receive
power which is denoted as Pu. This fact is taken
into account by weighting µu with this user’s received
power. Thus the resulting multi-user efficiency can be
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calculated more generally as

ηu =
1

1 + Ēs

N0

1
N

∑

v 6=u

µv · Pv

,
∑

v

Pv = U . (6)

Ēs/N0 is defined as an average value over all users in
order to get an appropriate criterion for fair comparison
with the equal power case. µu depends on the SINR at
the input of the decoder and is for that reason itself
dependent on Pu :

µu = g(SINR) = g

(

η
Ēs

N0
Pu

)

. (7)

The criterion for convergence is still reaching the
point of η = 1 after a finite number of iterations. For
the PIC this is fulfilled if f(η) > η , η∈[0, 1]. The
number of iterations needed depends on the width of
the tunnel. Whether the tunnel is open or not depends
also on the power distribution. For PIC it turns out
that equal power for all users is not the best choice, as
presented e.g. in [1] and [4].
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The optimization problem for PIC can be described
by [4]

min
P1,..,PU

∑

u

Pu s. t.

{

f(η) > η + ε , η∈[0; 1]

Pu > 0 , u = 1, ...U
(8)

The width of the tunnel can be influenced by ε in order
to decrease the number of iterations at the cost of higher
transmit power.
For the SIC a similar expression for the first condition
cannot be given. A more general condition for conver-
gence used for SIC is to reach η = 1 after an finite
number of iterations.

5.2 Differential Evolution

The cost functions of the examined optimization prob-
lems contain many local optima (multimodal functions),
especially for SIC. Furthermore, the search space is
highly constrained. Therefore a starting point in the
vicinity of the global optimum would be required for
the employment of local optimization techniques. As
the global optimum is not known in advance global
optimization methods have to be used. In this paper
the Differential Evolution (DE) algorithm is chosen
that belongs to the class of evolutionary algorithms
[7]. As the name indicates evolutionary algorithms are
motivated by the natural evolution process. In contrast
to local search algorithms not only one but several
points (population) in the search space are regarded at a
given time instance. The advantage is that evolutionary
algorithms do not need any knowledge of the search
space. Differential Evolution furthermore possesses the
property of fast convergence due to an adaptive step
size. Additionally, it is easy to use because of the few
control parameters.

The starting population is generated randomly and
should be sufficiently large for a high diversity. In
this case a population size of NP = 80 is used.
Standard settings are used for other control parameters
[8]. Population members of the current population are
combined using the evolutionary operators mutation,
recombination and selection to generate the next gener-
ation until a stopping condition is fulfilled. In this case
the distribution of population members is monitored
and the algorithm terminates when the maximum dis-
tance of every individual to the best population member
is beneath a threshold [9]. In Section 6 the number
of generations is restricted to 1000 due to limited
computational resources.

5.3 Optimization Results

The performance improvement by power optimization
is illustrated in Figure 6 where the transfer functions
for a system with load β = 4 at Eb/N0 = 7 dB with
equal and optimized power distribution are shown. For
equal powers it will get stuck at η ≈ 0.1 which is
a loss of about 10 dB compared to the SUB whereas
optimized power levels enable the detection to converge
to the SUB. With equal powers only a load of ≈ 3 is
possible. In Figure 7 it is shown that the weakest user
has only a loss of 2.5 dB compared to the equal power
case, so the remaining gain is 7.5 dB.
In Figure 8 a trajectory for optimized SIC is depicted;
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Figure 9 shows the corresponding power profile. For the
same system the results are very similar. If the tunnel
of the transfer function is very narrow, the differences
of the users are small and the SIC behaves more and
more like the PIC. For that reason the optimized power
levels are nearly the same, but the convergence speed
is higher for SIC. To achieve an efficiency of η = 0.98
the PIC needs 53 iterations for this example, while the
SIC requires only 35 iterations.

6 Additional Constraints

6.1 Limiting Maximum Number of
Iterations

Considering latency, the number of iterations should
be kept as small as possible. The channel decoding
remains the most complex part although the efficient
Max-Log-MAP is already applied. Up to now, the
number of iterations needed for convergence was not
taken into account for power profile optimization. If
the receiver terminates the detection after an insuffi-
cient number of iterations, the detection did not yet
converge and the loss compared to the SUB may be
intolerably large. If the maximum number of iterations
is introduced as an additional constraint, the minimized
overall power is expected to be larger than without
this constraint. In Figure 10 the transfer functions with
optimized power distribution under different constraints
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Fig. 10. Transfer function for PIC with different number of
iterations, β = 3

concerning the maximum number of iterations are de-
picted and the corresponding average Ēb/N0 are given
in the legend. It can be seen that the transfer functions
do not change significantly. The zoomed part in the
lower right hand corner of this plot shows that the
tunnel is getting wider and the corresponding Ēb/N0

increases for a decreasing number of iterations. The
interesting effect is that the transmit power has to be
increased by only ≈ 0.5 dB to save about 85% of
computational complexity if the power distribution is
optimzed with adequate constraints. These results are
obtained for a system with N = 4, U = 12 and a value
of multi-user efficiency to be reached of ηmax = 0.98.
This value is chosen because the additional effort to
reach η = 1 seems to be unjustified. In Figure 11
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the minimum Ēb/N0 is plotted over ηmax for different
system configurations. The point corresponding to η =
1 is no longer depicted for the reason mentioned above.
As expected the required power is increased for a
higher load. Also the maximum number of iterations
influences this parameter as already noted. It can be
seen that SIC with optimized power profile outperforms
the PIC with respect to the overall receive power.

6.2 Individual Power Constraint
Up to this point no individual power constraint was
considered. All users are assumed to be able to transmit
any desired power. In a cellular network this is not
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realistic. Users at the cellborder may not be able to pro-
vide the transmit power to fulfill the requirements at the
receiver. To handle this problem with the optimization
tool, individual power constraints were implemented.
To model this problem in a simple way two users were
assumed to have a limited transmit power, which is
prescribed in relation to the mean power of all users.
For example the parameter a = 0.1 describes a system
where two users are only able to provide 10% of
the average receive power. These parameters can be
adapted to any realistic scenario but for comparison
this simple model is used. The results for different
constraints are depicted in Figure 12. For a = 0.5 there
is nearly no loss compared to the unconstrained case.
As a decreases, the required overall power increases
significantly. That means the receive powers of two
users decrease but the other users have to increase
power disproportionately high in order to be still able
to detect all users. This behavior is depicted in Figure
13 for the case a = 0.1 and a = 0.5. The power profiles
are normalized to emphasize the relative behavior of the
users. To balance the weak users, mainly the moderate
powers are increased.

7 Conclusion
In this paper power profile optimization is applied to
iterative parallel and successive interference cancella-
tion in a coded CDMA uplink system. Optimization is

based on the prediction of convergence by multi-user
efficiency and is carried out by Differential Evolution.
It is shown that either the system load can be signifi-
cantly increased or the required overall receive power
is decreased by the use of an optimized power profile.
To adapt this tool to a realistic scenario with limited
computational capacity and limited transmit power of
the mobile stations some additional constraints are
introduced limiting the maximum number of iterations
and the receive power of specific users assumed to be
at the cell border. These additional constraints are at
the cost of maximum system load or overall received
power. But the cost is low compared with the savings
of computational complexity. By an increase of the
required overall power of only 0.5 dB the number of
iterations can be changed from 100 to 15 which leads
to a 85% reduction of the complexity of the detection
scheme.
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