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ABSTRACT

Diversity is a well-known means to counter the detrimental

effect of fading. Against this background, space-time codes

have been designed to facilitate transmit diversity with a suit-

able receiver. Furthermore, space-time codes combined with

OFDM allow for the utilization of frequency selective chan-

nels. However, a general assumption underlying the design of

space-time codes is the time-invariance of the channel, which

is violated in a high mobility environment. Large Doppler

spread causing rapidly time-varying channels can be compen-

sated at the receiver by sectorized antennas, which restrict the

angle of incidence of imping waves to a finite range. Com-

pared to an omnidirectional antenna, the resulting Doppler

spread of a sector antenna and the channel’s time-variance are

reduced. In this paper, we demonstrate the benefits of Doppler

compensating sectorized antennas for space-time coded

OFDM.

1. INTRODUCTION

Space-time (ST) codes are a tool to capitalize on transmit

diversity by coding across space and time and can be cate-

gorized into several categories. Orthogonal ST block codes

(OSTBC) with the Alamouti scheme [1] as its most promi-

nent representative are specifically designed to allow for low-

complex linear processing at the receiver which is identical to

Maximum-Likelihood detection [2]. The fact, that for more

than two transmit antennas OSTBCs with full rate and full

diversity do not exist, lead to the design of quasi-orthogonal

ST codes [3] with full rate at the expense of decreased di-

versity. Unlike OSTBCs and QOSTBs, the class of unitary

or differential space-time-codes do not require any channel

knowledge neither at the transmitter nor at the receiver. In [4]

differential unitary space-time modulation (DUSTM) is pro-

posed based on a group of unitary diagonal matrices, in [5]

differential space-time modulation (DSTM) based on groups

of unitary matrices is proposed. Both schemes can be inter-

preted as a matrix-valued generalization of the well-known

differential modulation. Furthermore, for the special case of

two transmit antennas, differential transmission can also be

based on orthogonal designs [6].

ST codes are seamlessly combined with OFDM to overcome

the influence of multipath propagation [7, 8]. However, due to

the prolonged symbol duration, a ST coded OFDM system is

likely to be more sensitive to channel fluctuations than a com-

parable single carrier system. Basically, a time-variant chan-

nel destroys the subcarriers’ orthogonality and introduces in-

tercarrier interference [9]. Hence, interference between ST

codewords arises requiring more complex equalization

schemes other than linear processing [10].

Using sectorized receive antennas allows for compensation

of large Doppler spread at the receiver [11]. The effect of

directional antennas is such that impinging waves are sepa-

rated according to their angle of incidence [12]. Thereby, the

effective Doppler spread in each sector is reduced, and the

resulting impulse response exhibits less time-variance com-

pared to an omni-directional antenna which does not restrict

the angle of incidence. Thus, under high mobility conditions

sectorized antenna reception can render a time-variant chan-

nel quasi-static, such that the design criterion of ST codes is

fulfilled.

In this paper, we consider a ST-coded OFDM system aided

by sectorized antennas with either coherent or noncoherent

reception. We restrict to the case of two transmit antennas.

Coherent reception is based on the Alamouti scheme [1] and

is facilitated by an equidistant pilot pattern. In principle, the

benefit of rendering the channel time-invariant by sectorized

reception lies in the increased bandwidth-efficiency due to a

large pilot spacing in time direction. We investigate differ-

ent types of equalizers to illustrate the influence of their re-

spective trade-off between complexity and performance, i.e.,

Maximum Likelihood (ML), Zero-Forcing (ZF) and Matched

Filtering (MF). On the other hand, differential ST schemes

(DUSTM, DSTM) circumvent the problem of channel estima-

tion and facilitate data detection without sacrificing bandwidth-

efficiency to pilot symbols. However, unlike differential mod-

ulation in a single carrier context, where the differentially

modulated information is transmitted during two symbol du-

rations, differential modulation for multiple transmit antennas

is based on matrix-valued differential symbols. These require

a much larger signaling interval, during which the transmitted



signal is exposed to channel fluctuations. We demonstrate the

benefits of sectorized antennas for this situation.

The paper is organized as follows. In Section 2 we detail

our system model, i.e., transmitter, channel and receiver. In

Section 3 we demonstrate the benefits of sectorized reception

by simulations. Section 4 concludes this work.

2. SYSTEM MODEL

2.1. Transmitter

We consider a MIMO-OFDM system with NT transmit an-

tennas, NR receive antennas, N subcarriers, and a cyclic pre-

fix with Ng symbols. At time instant k the complex envelope

of the t-th transmit antenna reads

s(k, t) =

√

P
NTN

∞
∑

i=−∞

N−1
∑

ν=0

d(ν, i, t)ej 2πν(k−iZ)
N g(k − iZ) ,

(1)

where the transmit antennas are indexed by 0 ≤ t < NT, the

transmit power by P , the transmitted symbol on subcarrier ν
in the i-th OFDM symbol from the t-th antenna by d(ν, i, t),
and Z = N+Ng. The filter function g(k) delimits the OFDM

symbols in time, i.e., g(k) = 1 for −Ng ≤ k < N and

g(k) = 0 for other time instants k.

Let us denote the information carrying symbols by dI(k). They

are drawn from an M -PSK or M -QAM signal constellation,

and in case of one transmit antenna (NT = 1) they are di-

rectly mapped to the subcarriers d(ν, i, t) after multiplexing

them with pilot symbols to enable channel estimation. Pilots

are distributed in an equidistant pattern with pilot spacing in

frequency direction denoted by ∆f and in time direction de-

noted by ∆t (cf. Fig 1a). In case of two transmit antennas.

For the case of two transmit antennas (NT = 2) we resort to

the Alamouti scheme

d(ν, 2i, 0) = dI(2ν + iN) ,

d(ν, 2i, 1) = dI(2ν + iN + 1) ,

d(ν, 2i + 1, 0) = d∗I (2ν + iN + 1) ,

d(ν, 2i + 1, 1) = −d∗I (2ν + iN) ,

(2)

i.e., a ST codeword is transmitted on one subcarrier within

two OFDM symbols. Thus, for the number of OFDM sym-

bols to be even it becomes necessary to insert additional pilot

symbols. An example is given in Figure 1b where the pi-

lot spacing ∆t = 2 requires the first two OFDM symbols to

carry pilot symbols, whereas subsequently only every second

OFDM symbol carries pilot symbols.

Except for reference symbols, differential modulation can by-

pass channel estimation and the need for pilot symbols. It can

be applied either in time or in frequency direction, depending

on the channel constraints. It is advisable to choose the re-

spective direction such that the correlation between consecu-

tive subcarriers permits data recovery by differential demodu-

lation. We choose differential modulation in time direction to

render the system robust against severe frequency-selectivity
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Fig. 1. Pilot schemes, OFDM symbol index i, subcarrier in-

dex n, pilot spacing in frequency ∆f and time ∆t; a) for

NT = 1 transmit antennas the last OFDM symbol is required

to contain pilot symbols; b) for NT = 2 transmit antennas

an even number of OFDM symbols requires insertion of ad-

ditional pilot symbols

for which the subcarrier correlation in frequency direction is

low. Unfortunately, the system will be less tolerant to time-

selectivity. However, Doppler compensation by sectorized

antennas maintains the necessary correlation between subcar-

riers in neighboring OFDM, and aids the differential demod-

ulator in recovering the transmitted data.

Differential modulation for NT = 2 is based on a group of

M -ary orthogonal matrices [2, 13]

D =

{

1√
2

[

x −y∗

y x∗

]}

(3)

with M = 22p, p ∈ IN, and x, y ∈ exp(j2πm/
√

M), 0 ≤
m <

√
M . Differential encoding is accomplished by com-

puting

D(k) = D∆(k)D(k − 1), (4)

where both the information carrying matrix symbol D∆(k)
and the differentially encoded matrix symbol D(k) are drawn

from the group D. Eventually, D(k) is transmitted on one

subcarrier within two OFDM symbols. In this paper, we fix

p = 2, such that M = 16, i.e., the underlying signal constel-

lation is QPSK, and one can transmit 4 bits per differential

symbol.

2.2. Channel

We are concerned with the performance of ST-coded OFDM

under high mobility conditions received by either omnidirec-

tional antennas or sectorized antennas. The former is char-

acterized by the full Doppler spread and rapidly fading chan-

nels, whereas the latter reduces the Doppler spread and leads

to less time-variant channel. Furthermore, omnidirectional re-

ception is likely to benefit from time-diversity, however, it is

susceptible to ICI, whereas this situation is reversed for sec-

torized antennas.

To assess the performance of such antenna structures we re-

sort to a WSSUS (wide sense stationary uncorrelated scatter-

ing) channel, which assumes a richly scattering receive en-

vironment with impinging plane waves from uniformly dis-



tributed angles of incidence. The respective channel impulse

response (CIR) at time instant k and delay ℓ reads [14]

hO(k, ℓ) =
1√
N e

Ne−1
∑

µ=0

a(µ)ej2πf(µ)Tkδ(ℓ − ℓ(µ)) , (5)

where 0 ≤ ℓ < L with channel length L, sampling period T .

We implicitly assumed that an realization of (5) models a CIR

between the t-th transmit and r-th receive antenna. The Ne

paths are characterized by their amplitude a(µ), Doppler fre-

quency f(µ) and delay ℓ(µ). The familiar Jakes’ or bathtube-

shaped Doppler spectrum follows, if the Doppler frequencies

are modelled according to f(µ) = fD cos(θ(µ)), where the

angles of incidence θ(µ) are uniformly distributed between

0 and 2π. The maximum Doppler frequency is denoted as

fD. Eq. (5) models omnidirectional reception by superim-

posing paths from all directions leading to a maximally large

Doppler spread.

On the other hand, a sectorizing antenna restricts the angles

of incidence to a finite range. Thereby, the maximal Doppler

spread can be reduced. We illustrated this approach in Fig. 2.

As an example the horizontal plane is divided into 4 sectors,

each corresponding to a sectorized antenna, e.g. sector an-

tenna r = 0 allows angles of incidence smaller than 70.5◦

and larger than 289.5◦. In Fig. 2b the corresponding subspec-

tra comprises Doppler frequencies from 1/3fD to fD, i.e, the

effective Doppler spread amounts to now 2/3fD instead of

2fD. In general, the Doppler spread can be reduced by a fac-

tor NR/2 + 1, if the aperture angles are chosen such that the

Doppler spectra is divided into equisized subspectra. Eventu-

ally, we model the impulse response at the r-th sector antenna

by

hS(k, ℓ, r) =
1√
N e

Ne−1
∑

µ=0

a(µ)ej2πf(r,µ)Tkδ(ℓ − ℓ(µ)) , (6)

where the Doppler frequencies follow from

f(r, µ) = fD cos (θ(r, µ)) . (7)

Due to the sectorization, the angles of incidence θ(r, µ) are

now restricted to the aperture angle of the r-th sector. We

implicity assumed that (6) models the CIR between the t-th
transmit and r-th receive antenna. A careful look at Fig. 2b

reveals that the resulting subspectra have a reduced Doppler

spread, but additionally a Doppler shift is associated with

them, which needs to be corrected prior to the FFT. Omit-

ting this frequency compensation would result into leakage

between the subcarriers.

2.3. Receiver

The receive signal via omnidirectional reception reads

yO(k, r) =

NT−1
∑

t=0

L−1
∑

ℓ=0

hO(k, ℓ, t, r)s(k − ℓ, t) + ηO(k, r) ,

(8)
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Fig. 2. a) Horizontal plane of reception divided into NR = 4
sectors, b) Doppler spectrum divided into NR/2+1 subspec-

tra with reduced Doppler spread

where the AWGN term ηO(k, r) of unit variance has been

added. Upon guard removal the FFT is performed yielding

zO(n, i, r) =

√

NT

NP

N−1
∑

k=0

yO(k + iZ)e−j2πkn/N (9)

The received signal via sectorizing antennas reads

yS(k, r) =

NT−1
∑

t=0

L−1
∑

ℓ=0

hS(k, ℓ, t, r)s(k − ℓ, t) + ηS(k, r) .

(10)

Unlike omnidirectional reception we are required to perform

frequency compensation prior to the FFT in order to avoid

leakage. Let us denote the necessary frequencies by fC(r),
which in [15] are shown to correspond approximately to the

average frequencies of the Doppler subspectra. Frequency

compensation results from

ỹS(k, r) = e−j2πfC(r)TkyS(k, r) , (11)

followed by the FFT

zS(n, i, r) =

√

NT

NP

N−1
∑

k=0

ỹS(k + iZ)e−j2πkn/N . (12)

In the following, we substitute z(n, i, r) as a placeholder for

either zO(n, i, r) or zS(n, i, r), which is valid since the sub-

sequently described receiver approachs apply to both antenna

structures. In general, we find that the n- th subcarrier in the i-
th OFDM symbol at the r-th receive antenna can be separated



into the data carrying subcarrier superimposed by AWGN and

ICI [9]. The channel coefficient is denoted as He(·) and the

equivalent noise term by ηe(·). The latter captures both ICI

and AWGN

z(n, i, r) =

NT−1
∑

t=0

He(n, i, t, r)d(n, i, t, r) + ηe(n, i, r) .

(13)

2.4. Channel estimation for coherent reception

We resort to Least Squares channel estimation for NT = 1, 2
antennas. For a pilot spacing in time direction ∆t > 1 some

OFDM symbols are not carrying any pilot symbols. To esti-

mate these channel transfer functions, we apply linear inter-

polation. In a first step, the CIRs are estimated, secondly the

FFT of these CIRs deliver an estimate of the transfer func-

tions. For NT = 1, omitting the OFDM symbol index i, we

collect the received pilot symbol in the vector

zP (r) = [z(0, r), z(∆f , r), z(2∆f , r), · · · ]T (14)

Defining F as the (N × N)-DFT matrix and FP = F(0 :
∆f : N − 1, 0 : L − 1) we find an estimate of the CIR by

computing

ĥ(r) = F
+
P zP (r) . (15)

Similarly, for NT = 2 we define the matrix

Φ(i) = [Dg{dP (i, 0)}FP , Dg{dP (i, 1)}FP ] , (16)

where we have made use of the operator Dg{·} which places

a vector as its argument on a diagonal matrix. Aditionally in-

troduced were the vectors dP (i, 0) and dP (i, 1) which denote

the transmitted pilot symbols on ∆f -spaced subcarriers. We

estimate the CIRs by computing

[ĥ
T
(0, r), ĥ

T
(1, r)]T = Φ

+(i)zP (r) . (17)

The channel transfer functions follow from (15) and (17) by

applying the FFT to the respective CIRs.

2.5. Coherent Detectors

In case of NT = 1 we perform Maximum Ratio Combin-

ing (MRC) before demodulation, in case of NT = 2, we

consider three different detectors to illustrate the trade-off be-

tween complexity and performance of the respective devices.

We are constructing equations to describe the received

Alamouti ST Codewords in terms of the transmitted data and

to arrive at suitable detection rules to retrieve this data. To

this end, omitting the subcarrier index n we define the vectors

zD(i, r) = [ z(2i, r), z∗(2i + 1, r) ]T , (18)

H(i, r) =

[

He(2i, 0, r) He(2i, 1, r)
−H∗

e (2i + 1, 1, r) H∗
e (2i + 1, 0, r)

]

,(19)

dD(i) = [ dI(2i), dI(2i + 1) ]T , (20)

η(i, r) = [ ηe(2i, r), η∗
e(2i + 1, r) ]T , (21)

to arrive at the system equation for an Alamouti codeword at

the r-th receive antenna

zD(i, r) = H(i, r)dD(i) + η(i, r) . (22)

Stacking all antenna signal yields

zD(i) = [ zT
D(i, 0), · · · , zT

D(i, NR − 1) ]T , (23)

H(i) = [ HT(i, 0), · · · , HT(i, NR − 1) ]T , (24)

η(i) = [ ηT(i, 0), · · · , ηT(i, NR − 1) ]T . (25)

We are eventually arriving at an equation which allows the

application of the different detectors.

zD(i) = H(i)dD(i) + ηe(i) (26)

Maximum-Likelihood, ML: This detector performs an ex-

haustive search over all hypotheses, selecting the candidate

with minimum Euclidean distance to the receive signal

d̂D,ML(i) = argmin
d̃D(i)

‖zD(i) − H(i)d̃D(i)‖2 . (27)

Zero-Forcing, ZF: This detector multiplies the received signal

with the pseudo-inverse of the estimated channel matrix.

d̂D,ZF (i) = Q{H+(i)zD(i)} . (28)

Matched-Filtering, MF: This detector multiplies the received

signal with the Hermitian of the estimated channel matrix. If

the channel is time-invariant over a ST-codeword, both sym-

bols are perfectly decoupled, and MF- is identlical to ML-

detection. In case of time-variant conditions, MF suffers from

interfering codesymbols.

[d̂D,MF (i)]m = Q
{

[H(i)]HmzD(i)

‖[H(i)]m‖2

}

, m = 0, 1 (29)

The operator Q{·} decides for the symbol in the applied sig-

nal constellation with smallest Euclidean distance to the passed

argument.

2.6. Differential demodulation

In case of NT = 1, differential demodulation is simply achieved

by

d̂∆(n, i) = Q
{

NR−1
∑

r=0

z(n, i, r)z∗(n, i − 1, r)

}

. (30)

Note, that the sum can be interpreted as Maximum Ratio Com-

bining. For NT = 2 we follow the approach of [4]. Omitting

subcarrier index n, the detector reads

D̂∆(i) = argmax
D̃∆∈D

∥

∥

∥
Z(i) + D̃∆Z(i − 1)

∥

∥

∥

2

, (31)

where we defined

Z(i) =

[

z(2i, 0) z(2i, 1) · · · z(2i, NR − 1)
z(2i+1, 0) z(2i+1, 1) · · · z(2i+ 1,NR − 1)

]

.

(32)



3. SIMULATION RESULTS

To illustrate the performances of transmitting with NT = 1, 2
transmit antennas and either omnidirectional or sectorized re-

ception we performed several simulations based on the chan-

nel model described in Section 2.2. The power delay profile

of the channel was chosen to be exponential such that each

channel tap’s power decays by 3 dB compared to its prede-

cessor. The number of subcarriers is fixed to N = 64, the

cyclic prefix to Ng = 16. Let γ2 be the ratio between the

number of totally transmitted symbols and the number of in-

formation carrying symbols, and define Eb/N0 = Pγ2(N +
Ng)/(N NR log2 M Rc) as the ratio of total bit energy to

noise power density at the receiver.

In Figure 3 the bit error rate of single antenna transmission

is depicted over the normalized Doppler frequency fD/Ts,

thereby Ts corresponds to the OFDM symbol duration and,

likewise, to the inverse of the subcarrier spacing. Figures 3a-

c illustrate the performance of omnidirectional reception for

different pilot spacings in time ∆t = 1, 2, 3. One recog-

nizes the general trend that larger Doppler frequencies lead

to an increased number of bit errors, since the influence of

intercarrier-interference increases as well. Furthermore, for

the given system the sampling theorem demands that the nor-
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Fig. 3. Uncoded BER vs. normalized Doppler frequency

fDTs for single antenna transmission with either omnidirec-

tional or sectorized reception, NR = 1, 2 receive antennas,

different pilot spacings ∆f = 3, ∆t = 1, 2, 3, exponential

power delay profile, QPSK

malized Doppler frequency adheres to fDTs < 0.4/∆t for

omnidirectional reception and to fDTs < 0.4(NR/2 + 1)/∆t

for sectorized reception. Figures 3d-f reveal that sectorized

reception enlarges the range of Doppler frequencies, for which

reliable detection is possible.

In Figure 4 performance results are given for NT = 2 trans-

mit antennas with either omnidirectional or sectorized recep-

tion. The normalized Doppler frequency is fixed to the value

fDTs = 0.2 corresponding to a rapidly time-variant channel.

The three different detectors from Section 2.5 are applied, and

the pilot spacings in time ∆t = 1, 3 are used.

Omnidirectional reception leads in all considered cases into

an error-floor, due to the uncompensated Doppler influence

and the therefore considerably large intercarrier-interference.

Sectorized reception, on the other hand, successfully compen-

sates the large Doppler influence and performs significantly

better at high SNR compared to omnidirectional reception.

Furthermore, the performance of the ML and ZF detectors are

very similar, with a slightly better performance of the former.

As it turns out, the low-complex Matched Filtering (MF) ap-

proach, which completely disregards the time-variance of the

channel performs closely to ML and ZF in the case of NR = 8
receive antennas. For NR = 4 one can recognize an SNR-loss

of approx. 3 − 4 dB to ML and ZF.
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In Fig. 5 we present results for a convolutionally coded

and randomly bit-interleaved ST-coded OFDM system with

single and two-fold transmit diversity based on the Alamouti

Scheme. The pilot spacing in time is varied within ∆t =
1, 2, 3. For NT = 1 we perform Maximum Ratio Combining,

for NT = 2 we perform ML detection.

We observe that for small Doppler frequencies sectorized re-

ception with a single transmit antenna performs best. This is

due to the negligible intercarrier-interference. Furthermore,

omnidirectional reception leads here to an increased time di-

versity, which can be exploited by the underlying channel

code. For larger Doppler frequencies (fDTS > 0.05), sec-

torized reception in conjunction with two-fold transmit di-

versity performs best. However, in this Doppler range a sin-

gle transmit antenna combined with sectorized reception per-

forms quite closely to the two-fold transmit diversity case.

Additionally, omnidirection reception for large Doppler fre-

quencies leads to a rather harsh impairment of the bit error

rate since that intercarrier interference is not compensated.

Figure 6 depicts simulation results for differential modulation

with NT = 1, 2 transmit antennas and sectorized reception

with NR = 1, 2, 4, 8. For both single and double transmit

diversity the coded BER benefits from a finer sectorization

at the receiver, since the channel is rendered the less time-

variant, the more sectors are provided. It is also apparent

from Figure 6 that two-fold transmit diversity performs su-

perior over single transmit diversity only for small Doppler

frequencies. This is due to the prolonged signalling interval

of the matrix-valued differential symbols. In the given case

it takes the duration of four OFDM symbols to transmit one

matrix-valued differential symbol.

4. CONCLUSION

We have described a space-time coded OFDM system in a

high mobility environment. To compensate for the rapidly

time-variant channel we employed sectorizing antennas, which

lead to a separation of the Doppler spectrum into a set of sub-

spectra. Those are characterized by a smaller Doppler spread,

thus they are associated with a slowly time-varying channel.

We investigated both coherent and noncoherent (differential)

ST-codes, both based on the Alamouti scheme. For coherent

reception we examined three different detectors, Maximum-

Likelihood dection, Zero-Forcing and Matched-Filtering.

Whereas the former two perform quite similary due to their

high complexity, the latter Matched-Filtering as a low-com-

plexity approach was shown to benefit greatly from sectorized

reception. This is due to rendering the channel quasi-static if

an appropriate number of sector antennas is provided. Dif-

ferential ST-coded were shown to benefit from sectorized re-

ception only for the low Doppler case. For the high Doppler

case, the signaling interval becomes too large, since matrix-

valued differential symbols need to be transmitted. Hence,

single antenna transmission leads to symbols of shorter du-

ration, which improves the performance under high Doppler

influence.
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