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Abstract— Usually the primary goal for the application
of optimization algorithms is convergence to the global
optimum, and the secondary goal is to use the least
computational effort. By application of different stopping
criteria the achievement of both objectives is influenced: If
an optimization run is terminated too early, convergence
may not be reached, but on the other hand computational
resources may be wasted if the optimization run is stopped
late. Because the two criteria that are applied mostly in
evolutionary algorithms literature have some drawbacks,
several stopping criteria are analyzed in this work, using the
Differential Evolution algorithm. In contrast to a prior study
a constrained optimization problem is used here. It consists
of optimizing the power allocation for a CDMA (Code
Division Multiple Access) system that includes a parallel
interference cancellation technique.

I. INTRODUCTION

Due to the growing complexity of technical systems
optimization algorithms are integrated into design pro-
cesses as for example in the optimization system MODOS
for microelectronic circuits and micro systems [1]. The
need for reliable stopping criteria arises because the op-
timization algorithms must be capable of terminating au-
tomatically without wasting computational resources but
also without stopping prematurely considering the results
accuracy. This is especially important if a lot of scenarios
should be optimized that differ in the used parameters.
An example is the here used problem that consists of
the optimization of power allocation. It is interesting
to have several results in dependance on the target bit
error rate to meet the different quality requirements that
result from diverse applications like voice or multimedia
services. Furthermore, if a Monte Carlo simulation is done
that e.g. regards different distributions of user locations,
many optimization runs need to be done, so wasting of
computational resources has to be prevented.

Stopping criteria can be implemented in several ways,
but in literature mostly only two criteria are used. For
problems with known optimum an error measure in
dependance on the optimum is often applied. As the
optimum is generally not known for real-world problems,
this criterion is mainly applied for test functions. For real-
world problems the stopping criterion consists mostly of a
limitation of the number of objective function evaluations.
The drawback of this method is that the number of
function evaluations that is needed for convergence is
highly dependent on the optimization problem. Usually
trial-and-error methods are applied to determine a suitable
setting. Another disadvantage is that the needed number

of function evaluations is subject to fluctuations because
evolutionary algorithms like Differential Evolution (DE)
include randomness. Therefore, a safety margin for the
number of function evaluations has to be added to en-
sure convergence. Especially for problems with compu-
tationally expensive objective functions this approach is
unfavorable.

If the state of the optimization run is taken into account
for the decision when to terminate, the problem with the
fluctuations in the number of needed function evaluations
can be avoided. In this work several stopping criteria are
studied which possess this characteristic. It is reported
which of the criteria are suitable for DE based on the
examined optimization problem.

This paper is organized as follows: In Section II the
Differential Evolution algorithm is introduced. The basic
algorithm is described as well as the applied constraint-
handling method and the approaching of boundaries. In
Section III the stopping criteria are presented and Section
IV gives background information about the optimization
problem. In Section V the experimental settings are de-
scribed, in Section VI results are presented and Section
VII closes with conclusions.

II. DIFFERENTIAL EVOLUTION

Differential Evolution was developed in 1995 as a
population-based stochastic evolutionary optimization al-
gorithm [2]. The execution of the algorithm is similar
to other evolutionary algorithms like Genetic Algorithms
(GAs) or Evolution Strategies (ESs): The first generation
is initialized randomly and further generations evolve by
the application of certain evolutionary operators until a
stopping criterion is satisfied. The evolutionary algorithms
differ mainly in the representation of parameters (usually
binary strings are used for GAs while parameters are real-
valued for ESs and DE) and in the evolutionary operators.
A characteristic of DE is that the evolutionary operators
are dependent on members of the current generation,
leading to an adaptive scaling of step sizes.

The size of the population is specified by the parameter
NP that has to be set by the user. Usually it is kept fixed
during an optimization run. The population members (also
called individuals) are real-valued vectors with dimension
D that equals the number of objective function parame-
ters. The evolutionary operators mutation, recombination
and selection are applied to every population member �xi

with i ∈ [0, NP−1] to generate a new generation. First, a
mutated vector is built by adding the weighted difference



of two randomly chosen population members to a third
randomly chosen individual:

�vi = �xr1 + F · (�xr2 − �xr3) (1)

The amplification constant F is a control parameter
of DE that has to be set by the user. The indices r1,
r2, r3 denote three mutually different individuals that are
also different from the currently regarded individual �xi.
In Fig. 1 mutation is shown for the dimension D = 2.
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Fig. 1. Mutation for D = 2

The second evolutionary operator that is applied is
recombination. The trial vector �ui is built by determining
for every vector component j ∈ [0,D − 1] if the cor-
responding component should be copied from the target
vector �xi or the mutated vector �vi. The decision is based
on a random variable randj that is compared to the
user-defined control parameter CR. However, for every
individual it is ensured that at least one component of the
trial vector �ui is copied from the mutated vector �vi by a
random choice of a number k ∈ [0,D−1].

ui,j =

{
vi,j if randj ≤ CR or j = k

xi,j otherwise
(2)

In Fig. 2 recombination is shown for D = 2 dimensions.
It can be seen that three potential trial vectors exist for
every target vector in this case.
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Fig. 2. Recombination for D = 2

By the use of the third evolutionary operator selection
it is determined for every i ∈ [0, NP−1] whether the
target vector �xi or the corresponding trial vector �ui should
be inserted into the next generation. As basis for the
decision the objective function value is considered (for
minimization problems a smaller objective function value
is preferred). Because this selection scheme does not
allow deterioration with regard to the objective function
value, the DE selection scheme is called greedy.

Several variants of DE have been developed that differ
in the mutation and recombination operators [3]. They are
specified using the notation

DE/x/y/z (3)

where x denotes the mutated vector, y is the number of
difference vectors and z gives the crossover scheme [4].
The here used variant can be described as DE/rand/1/bin,
meaning that �xr1 is a randomly chosen population vector,
one vector difference (�xr2 − �xr3) is used and a binomial
crossover scheme is employed. This variant belongs to the
first DE schemes that were developed [2] and it is used
frequently in literature [5], [6], [7].

A. Handling of Constraints

The applied constraint-handling method is based on
modifying the selection procedure. This technique is
described in [8] for multi-objective optimization and a
similar variant is used in [5] for single-objective DE.
When a vector �a is compared to a vector�b, �a is considered
better if:

• Both vectors are feasible, but �a yields the smaller
objective function value.

• �a is feasible and �b is not.
• Both vectors are infeasible, but �a results in the lower

amount of constraint violations.
An advantage over other constraint-handling techniques

is that no additional parameters are needed. The only
information analyzed are objective function values for
feasible individuals and the amount of constraint viola-
tions for infeasible individuals. Solutions with smaller
constraint violations are preferred, so the search is di-
rected to feasible regions. For unconstrained problems the
replacement procedure is the same as for the original DE.

B. Approaching of Boundaries

In the given optimization problem it has to be ensured
that some boundary values are not violated. Several
possibilities exist for this task :

• The positions that violate boundary constraints are
newly generated until the constraints are satisfied.

• The boundary-exceeding values are replaced by ran-
dom numbers in the feasible region.

• The boundary is approached asymptotically by set-
ting the boundary-offending value to the middle
between old position and boundary:

uj,i,G+1 =

⎧⎪⎨
⎪⎩

1
2 · (xj,i,G + xU

j

)
if uj,i,G+1 > xU

j
1
2 · (xj,i,G + xL

j

)
if uj,i,G+1 < xL

j

uj,i,G+1 otherwise
(4)



where xU
j is the upper limit and xL

j is the lower limit.
In this work the latter approach is used because of a

recommendation in [4].

III. STOPPING CRITERIA

Ten stopping criteria are examined which were mostly
introduced in [9] for unconstrained single-objective opti-
mization. In the following the criteria are described with
the adjustments for constrained single-objective optimiza-
tion problems. The structure of [9] is maintained, so the
stopping criteria are sorted into six classes: Reference,
exhaustion-based, improvement-based, movement-based,
distribution-based and combined criteria.

1) Reference criteria: If the optimum is known, an
error measure depending on the difference to the
optimum can be employed for detecting conver-
gence. As the optimum is generally not known for
real-world problems, these criteria are usually only
applicable for test functions. However, criteria can
be derived that are adapted to real-world problems
(see class 5). In this work only the adapted criteria
are used.

2) Exhaustion-based criteria: Due to limited compu-
tational resources an optimization run might be
terminated after a certain generation, number of ob-
jective function evaluations or CPU time. Although
these criteria are commonly used in evolutionary
algorithms literature, they are not investigated here
because of the strong dependence on the objective
function. However, a maximum number of gener-
ations Gmax is used in combination with every
stopping criterion to prevent the algorithm from
running forever if a criterion is not able to stop the
run. After preliminary tests Gmax = 2000 is used.

3) Improvement-based criteria: If improvements are
small over some time, an optimization run should
be stopped. The following variants are examined:

a) ImpBest: Improvement of the best objective
function value is below a threshold t for a
number of generations g [10]

b) ImpAv: Improvement of the average objective
function value is below a threshold t for a
number of generations g [11]

c) NoAcc: No acceptance occurred in a specified
number of generations g [12] (note that accep-
tance equals improvement for DE)

Criteria ImpBest and ImpAv have been adjusted for
constrained optimization in the following way: If
an individual is feasible in the current generation
but it was infeasible in the previous generation, the
improvement is assigned an arbitrary high number.
If an individual is infeasible in both the current
and the previous generation, the improvement is
calculated based on the constraint violation.
For criterion NoAcc no explicit adjustment had to
be made because the constraint-handling is included
in the selection scheme.

4) Movement-based criteria: The movement of indi-
viduals is used as basis for these criteria.

a) MovObj: Movement in the population with
respect to the average objective function value
(objective space) is below a threshold t for a
number of generations g
For DE this criterion is the same as criterion
ImpAv because of the greedy selection scheme
that prohibits moves that deteriorate the solu-
tion. However, for another optimization algo-
rithm (Particle Swarm Optimization, PSO) this
criterion is beneficial [9], so it is mentioned
here but not included in the examination.

b) MovPar: Movement in the population with
respect to positions (parameter space) is below
a threshold t for a number of generations g

For criterion MovObj the same adjustment for con-
strained optimization problems can be done as for
ImpBest and ImpAv.
Criterion MovPar does not need any adjustment
because only the changes in positions of individuals
are observed, regardless of their feasibility.

5) Distribution-based criteria: For DE usually all indi-
viduals converge to the optimum eventually. There-
fore, it can be concluded that convergence is
reached when the individuals are close to each
other. Because it is assumed that the optimum is not
known as for the reference criterion, the distances
between the population members are examined. The
first three criteria are applied in parameter space
while the forth is used in objective space.

a) MaxDist: Maximum distance from every vec-
tor to the best population vector is below
threshold m [10]

b) MaxDistQuick: The best p% of the population
individuals are checked if the maximum dis-
tance to the best vector is below threshold m,
respectively
This criterion was newly presented in [9]. It
is inspired by the observation of optimization
algorithms: During an optimization run a state
may occur where most population members
have already converged to the optimum but
some individuals are still searching. Using
the MaxDist criterion the algorithm would
not terminate until all population members
are converged, so computational resources are
wasted if the optimum is already found. Using
the MaxDistQuick criterion the population is
rearranged due to the objective function values
of the individuals using a quicksort algorithm.
Further only the best p% of the individuals
are checked for their maximum distance to the
best population member.
For the functions used in [9] PSO benefits
more from this method than DE. The reason
is presumably the greedy selection scheme of
DE that leads to a faster convergence of the
individuals.

c) StdDev: Standard deviation of the vectors is
below threshold m



The standard deviation is calculated using

s =

√∑NP−1
i=0 (xr,i − x̄)2

NP − 1

with the radius of the population members

xr,i =
√∑D−1

j=0 x2
i,j and the average radius

x̄ = 1
NP

∑NP−1
i=0 xr,i. A similar criterion is

used in [13].
d) Diff : Difference of best and worst objective

function value is below threshold d and at least
p% of the individuals are feasible [14]

For criteria MaxDist and StdDev no adjustment for
constraint-handling is needed because only posi-
tions are examined, as for criterion MovPar.
However, for criterion MaxDistQuick it has to be
assured that at least p% of the individuals are
feasible because the population is sorted according
to the objective function values of the individuals.
Another possibility would be to sort the infeasible
individuals based on their constraint violation.
Criterion Diff included only parameter d for uncon-
strained optimization problems in [9], but for con-
strained optimization parameter p has been added
to account for the percentage of the population that
is demanded to be feasible.

6) Combined criteria: Because objective functions pos-
sess different features, reactions to stopping rules
may be different. Therefore, it is supposed to be
advantageous to use several criteria in combination.
Here the following combined criteria are applied:

a) ComCrit: If the average improvement is below
threshold t for a number of generations g, it
is checked if the maximum distance is below
threshold m
In [9] only one combined criterion is de-
scribed, but here another one is added. For
clarity reasons the name of the already intro-
duced criterion is maintained.

b) Diff MaxDistQuick: If the difference between
best and worst objective function values is be-
low threshold d, it is checked if the maximum
distance of the best p% of the individuals to
the best solution is below threshold m (at least
p% of the individuals have to be feasible)
In [9] it is assumed that a combination of
distribution-based criteria in objective and pa-
rameter space may be beneficial, so this crite-
rion is added here.

The combined criteria are composed of several
already presented stopping criteria, so the same
adjustments for constrained optimization are done
for them as for the individual criteria.

All criteria from classes 3 to 6 incorporate some sort of
adaptiveness that enables them to evaluate information
about the state of an optimization run. In the following
it is examined if the respective mechanisms are actually
effective for stopping the execution of Differential Evo-
lution at an appropriate time.

IV. THE POWER ALLOCATION PROBLEM WITH

INTERFERENCE CANCELLATION

CDMA is a popular multiple access scheme that is
currently used in UMTS (Universal Mobile Telecommu-
nications System). CDMA allows several users to transmit
data to one base station at the same time and in the same
frequency band. It is possible to allocate the received
power equally to all users by the application of a closed-
loop power control but the system performance (or bit
error rate) with interference cancellation can be improved
significantly by assigning different receive powers to
the users. The received power of one particular user
depends on the transmit power which is limited especially
when assuming mobile stations with battery supply. The
properties of the channel including free space attenuation
also limit the receive power.

For optimization the design variables are the received
powers that are allocated to each individual user. For this
work U=16 users are assumed. The objective function
that is to be minimized consists of the sum of power
for all users, resulting in a single-objective optimization
problem.

The system performance is usually degraded by multi-
user interference. By means of parallel interference can-
cellation (PIC) the interference can be estimated iter-
atively. If the applied interference cancellation method
converges, the calculated interference can be subtracted
from the received signal before detection and the single-
user bound (SUB) is reached. In the following the con-
straint is presented that results from the applied parallel
interference cancellation technique.

The convergence behavior of PIC can be visualized by
using the multi-user efficiency (MUE), denoted as η [15].
For PIC the multi-user efficiency is given by

η =
SINR

SNR
=

2σ2
d/(σ2

n + σ2
MUI)

2σ2
d/σ2

n

=
1

1 + βµEs/N0
(5)

where SINR is the signal-to-interference-plus-noise-ratio,
SNR is the signal-to-noise-ratio, σ2

d is the variance of
the desired signal, σ2

n is the power of the noise, σ2
MUI

is the variance of the remaining multi-user interference
after cancellation, β is the system load, µ is the remain-
ing mean squared error of the estimated symbols after
decoding, Es is the energy per symbol and N0/2 is the
power density of the noise (for more detailed information
about CDMA see [16]). The multi-user efficiency at the
iteration m is dependent on the multi-user efficiency at
the previous iteration: η(m) = f

(
η(m−1)

)
. The transfer

function f is displayed in Figure 3. Additionally, the so-
called trajectory is given which describes the same facts
as the transfer function but only considers discrete points
of interest [17]. In the plot of the transfer function the
point η = 1 characterizes perfect interference cancella-
tion which equals the SUB. If the function crosses the
bisecting line given by η(m) = η(m−1), the detection will
get stuck. Therefore, a constraint for the PIC optimization
problem is that for each iteration the following condition
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must hold:

f
(
η(m)

)
> η(m) , η ∈ [0, 1] (6)

Apart from the constraint that results from the inter-
ference cancellation method, boundary constraints have
to be regarded. As no negative power exists, the design
variables have to be non-negative. However, it has been
observed that setting the lower limit to zero leads to a
trivial special case for which one user gets all the available
power. Therefore, the lower boundary value is set to
Xmin = 0.5. An upper boundary value of Xmax = 4
is also assigned to restrict the search space.

In preliminary tests it could be seen that permutations
of solutions appeared for PIC. Because of the parallel pro-
cessing the permutations have no influence on the results.
Therefore, computational cost is saved by rearranging the
users in ascending order.

V. EXPERIMENTAL SETTINGS

The following experiments reflect which stopping cri-
teria are suitable for DE when optimizing the described
constrained single-objective optimization problem. Fur-
thermore, it is analyzed which criteria show key problems
that prevent their successful application. Additionally, the
dependence on the settings of stopping criteria parameters
is investigated.

For the control parameters of DE the following settings
are used: NP = 30, F = 0.7 and CR = 0.9 [18].

The examined values of the stopping criteria parameters
are displayed in Table I. Note that some of the start
values are different from the ones used in [9]. For ev-
ery parameter combination 100 independent optimization
runs were carried out. In [18] the optimal value for the
objective function was found to be 18.43, but as this exact
value was found very infrequently (twice in 10000 runs),
convergence was defined as reaching an objective function
value of

∑
Pu ≤ 18.5.

There are two situations for which an optimization run
is considered unsuccessful:

• If the objective function value of
∑

Pu ≤ 18.5 is
not reached when terminating the algorithm.

TABLE I

EXAMINED PARAMETER VALUES OF THE STOPPING CRITERIA

Criterion Parameter Start Stop Modifier
value value

ImpBest, ImpAv t 1e-2 1e-6 · 1e-1
g 5 20 + 5

NoAcc g 1 5 + 1
MovPar t 1e-2 1e-6 · 1e-1

g 5 20 + 5
MaxDist, StdDev m 1 1e-4 · 1e-1
MaxDistQuick m 1 1e-4 · 1e-1

p 0.1 1.0 + 0.1
Diff d 1e-1 1e-6 · 1e-1

p 0.1 1.0 + 0.1
ComCrit t 1e-2 1e-6 · 1e-1

g 5 20 + 5
m 1 1e-4 · 1e-1

Diff MaxDistQuick d 1e-1 1e-6 · 1e-1
p 0.1 1.0 + 0.1
m 1 1e-4 · 1e-1

• If the maximum number of generations is reached
without termination of the algorithm, regardless of
whether the optimum is found or not.

As performance measure the success performance is
used that is defined in [19] in the following way: The
success performance is calculated by multiplying the
mean number of function evaluations for successful runs
with the number of total runs and dividing this by the
number of successful runs. A low success performance
indicates a good result. A high success performance can
occur due to two different reasons: Either the number
of successful runs is low or the number of function
evaluations for convergence is high.

In this work not the number of objective function
evaluations is used for the calculation of the success
performance but the number of constraint function eval-
uations because the objective function is not evaluated
for infeasible individuals and the computation of the
constraints can be equally computationally expensive.

Some parameter values are omitted in figures of the
following section if the success performance could not
be calculated because there was not a single successful
run. Furthermore, all figures are scaled to a success
performance of up to 20000 for comparability reasons.

VI. RESULTS

For criterion ImpBest the success performance is dis-
played in Fig. 4. The same result is yielded as for
unconstrained optimization in [9]: There is no parameter
combination that results in a convergence rate of 100%.
Obviously, improvement of the best objective function
value occurs too irregularly, so criterion ImpBest provides
no reliable stopping rule for DE.

Criterion ImpAv yields better results than ImpBest as
t ≤ 10−5 results in a convergence rate of 100%. However,
the success performance becomes rather high for these
settings (see Fig. 5). Furthermore, choosing of parameter
values is difficult as there is no obvious connection to the
optimization problem. Therefore, criterion ImpAv cannot
be recommended for use with DE, either.



Fig. 4. Success performance for criterion ImpBest

Fig. 5. Success performance for criterion ImpAv

In Fig. 6 it can be seen that the success performance for
criterion NoAcc increases quadratically with rising num-
ber of generations g, with the exception of g = 1 because
of a convergence rate of only 57% (the other parameter
settings yield convergence rates of approximately 100%).
In [12] it is stated that long periods without acceptance
of a vector are probably more common for DE than for
other evolutionary algorithms, so g should not be set too
low. However, for the optimization problem applied here
a value of g ≥ 2 is sufficient to induce reliable detection
of convergence. The results of this work indicate that
acceptance happens frequently as long as the population
still improves, so NoAcc provides a suitable stopping
criterion for DE. However, note that in [9] NoAcc does
not show good results for a function with a flat surface.

The success performance for criterion MovPar is shown
in Fig. 7. As for ImpAv and ImpBest choosing of suitable
parameter settings is difficult because there is no observ-
able connection to the optimization problem, so criterion
MovPar cannot be recommended for use with DE.

The results for criteria MaxDist and StdDev are dis-

Fig. 6. Success performance for criterion NoAcc

Fig. 7. Success performance for criterion MovPar

played in Fig. 8. In [9] both criteria yielded approximately
the same results, but here the success performance of
MaxDist is inferior to StdDev. This result can be partially
explained by the relatively small Gmax that is used here.
Because a lot of optimization runs were not terminated
before reaching Gmax for MaxDist, the success perfor-
mance is large. The remaining difference in performance
can be explained by the fact that StdDev includes an
average of positions while MaxDist regards every indi-
vidual for itself. Why this behavior is more noticeable in
this work than in [9] cannot be stated definitely, because
there are several differences: The shapes of the objective
functions may be significantly different, the dimension is
considerably higher here (D = 16 in contrast to D = 2
in [9]) and furthermore the optimization problem applied
here incorporates a constraint.

For both MaxDist and StdDev as well as MaxDistQuick
(see Fig. 9) the success performance is strongly dependent
on the maximum distance m. As the distribution-based
criteria in parameter space generally produce good results
if suitable parameter settings are used, it is analyzed in
the following if there is a connection between parameter
settings and the optimization problem.



Fig. 8. Success performance for criteria MaxDist and StdDev

Fig. 9. Success performance for criterion MaxDistQuick

For the examined optimization problem best parame-
ter settings are m = {10−1, 10−2} for both MaxDist
and MaxDistQuick while m = 10−3 provided the best
results for StdDev (m = 10−2 has a lower success
performance but a convergence rate of only 66%). In
[12] it is recommended to use parameter settings that
are several orders of magnitude lower than the desired
accuracy if population statistics like StdDev are used
as stopping criteria. As the best found setting for the
examined problem is 18.43, but reaching a value of∑

Pu ≤ 18.5 was defined as convergence, the demanded
accuracy equals 0.07 here. Hence, the best parameter set-
ting for StdDev is approximately one order of magnitude
lower than the accuracy, and for the other two criteria
values in the same order of magnitude as the accuracy
resulted in good convergence behavior. Therefore, it can
be concluded that these criteria are suitable for DE, but
additional research should concentrate on analyzing the
connection between the optimization problems and the

stopping criteria parameters more precisely. Note that the
computational complexity of MaxDistQuick is higher than
for MaxDist [20], so MaxDist should be preferred for DE
as there are no significant differences in the performance.

The success performance is approximately constant
in dependance on p using criterion Diff (Fig. 10). In
contrast large variations in the success performance are

Fig. 10. Success performance for criterion Diff

observed when changing d. Reliable convergence behav-
ior is yielded by parameter values of 10−2 ≥ d ≥ 10−4

for which all optimization runs converged. In [12] it
is recommended to set d several orders of magnitudes
lower than the allowed tolerance (distance) from the
optimum. However, the success performance gets consid-
erably larger with decreasing d (see Fig. 10), so here the
best parameter setting d = 10−2 is in the same order of
magnitude as the desired accuracy. As for the distribution-
based criteria in parameter space it can be concluded
that criterion Diff is suitable for DE, but the relationship
between the optimization problems and the parameter of
the stopping criterion needs more thorough investigation.

For the two combined criteria the display of results
is more difficult as three parameters are regarded, re-
spectively. Reliable convergence behavior is yielded by
m = {10−1, 10−2} for ComCrit (as it was for MaxDist).
Interestingly, for m = 10−2 the success performance does
not change with g and t and matches approximately the
success performance of MaxDist for the same parameter
setting. Therefore, only the results for m = 10−1 are
displayed in Fig. 11. The success performance is higher
than for MaxDist with the same setting of m, so based
on the examined optimization problem MaxDist should
be preferred.

For criterion Diff MaxDistQuick the success perfor-
mance is relatively constant for varying p, so results are
only given for a medium setting of p = 0.5 (see Fig. 12).
In contrast to MaxDist and Diff larger values of m and
d also lead to reliable convergence here but choosing of
parameter values is less connected with the optimization
problem and also more parameters have to be set, so it is
easier to use the individual criteria.



Fig. 11. Success performance for criterion ComCrit with m = 10−1

Fig. 12. Success performance for Diff MaxDistQuick with p = 0.5

VII. CONCLUSIONS

Stopping criteria influence both the convergence prob-
ability and the convergence speed of optimization algo-
rithms. In this work a constrained single-objective power
allocation problem is used for the examination of stopping
criteria that react adaptively to the state of an optimization
run. By their application problems are avoided that are
caused by fluctuations in the number of function eval-
uations that are needed for convergence. Therefore, the
computational cost for optimization can be reduced. This
is especially advantageous if a lot of optimization runs
are necessary e.g. for a Monte Carlo simulation or an
examination with varying parameters.

The best results are yielded by the following criteria:
NoAcc (no acceptance occurred in a predefined number
of generations), MaxDist (the maximum distance of every
population member to the best solution is observed),
StdDev (monitoring the standard deviation of positions)
and Diff (the difference between best and worst objective
function value in a generation is regarded). Especially for
the latter three criteria, which consider the distribution
of the individuals, the proper choice of parameter values
is important but the results of this work and of previous
examinations [9] indicate that suitable parameter settings
are closely related to the desired accuracy.

It should be noted that results of stopping criteria may
vary for different optimization algorithms [9].

For future work stopping criteria should be examined
using functions with different characteristics to find out
by which properties their performance is influenced.
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