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Abstract

In this paper some approaches to detect signal streams of a multi layer transmission system are presented. We will
focus on blind algorithms for the separation of the data stream and improve their performance in an iterative way
in order to gain nearly the same performance as with a known channel matrix. The overall algorithm will remain
blind and does not need any training data.

1 Introduction
Multi layer transmissions are an up to date technology
to exploit the capacity of a spatial channel. Lately,
powerful detection algorithms have been developed.
These algorithms need a suitable estimation of the
transmission channel. In most cases the channel estima-
tion is obtained by including a pilot sequence in the data
stream. However, this will lead to a loss of the payload
rate that can be transmitted. Therefore we will introduce
a new scheme that combines blind source separation
techniques with an efficient detection algorithm in an
iterative way. This will lead to an overall blind detection
of the transmitted symbols. We will study this idea
with some variants of the constant modulus algorithm
(CMA) and higher order statistics (HOS) based source
separation approaches.

The remainder of the paper is organized as follows:
In section 2 we will introduce the transmission system
that was used for all simulations. In section 3 we will
present some approaches to achieve a blind separation
of a multi layer transmission. We will present some
variants of multiple input multiple output (MIMO)
CMA algorithms and point out connections with clas-
sical blind source separation (BSS) approaches. We
compare their performance using Monte Carlo simula-
tions. A new approach to combine source separation
techniques with a multi layer detection scheme is
presented in section 4. This will lead to an overall blind
symbol detection scheme. Section 5 introduces channel
coding into the presented scheme and illustrates some
problems in this context. A summary and concluding
remarks can be found in section 6.

2 System description
In this paper we analyze a multi layer transmission as
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seen in figure 1. This system can be described by

x = H · s + ν . (1)

Equation (1) models a transmission of signal
streams s trough a spatial channel H. Let s =
[s0(k), s1(k), . . . , snT−1(k)]

T be the vector of trans-
mitted symbols at time instant k. We usually use a
block processing of the data and use a length of k =
0 . . . L− 1 symbols. For a clear arrangement and short
formulas we‘ll drop the index k in the following text.

The dimensions of H are nR × nT for nR receive
and nT transmit antennas.

H =







h0,0 · · · h0,nT−1

...
. . .

...
hnR−1,0 · · · hnR−1,nT−1






(2)

The entries of H are assumed to be Gaussian dis-
tributed and statistical independent. They are assumed
to be constant for one block of L time instants
in order to model a slow fading channel. ν :=
[ν0(k), ν1(k), . . . , νnR−1(k)]

T is a vector with additive
Gaussian noise that is assumed to be white.

During this paper we concentrate on a scenario with
nT = 4 transmit and nR = 4 receive antennas. We
transmit L = 200 uncoded and coded QPSK symbols.
These signals have a constant magnitude if the symbol



timing is perfectly known and therefore can be detected
by constant modulus approaches. The energy of the
transmitted signals is normalized so that the average
received energy of one signal is one. (Therefore we’ll
only observe diversity gains and no additional array
gain due to an increasing number of antennas.)

3 Blind separation approaches for
communication signals

There are several methods available to separate data-
streams blindly with more or less knowledge of the
signals. In this paper we concentrate on two families of
approaches. The classical approaches try to maximize
the statistical independence of signal streams and make
no use of the discrete alphabet of modulated signals,
whereas the constant modulus approaches considered
here use the discrete amplitude level of the QPSK
signals.

3.1 Classical blind source separation

The classical blind separation schemes are based on
the assumption of independent components in the
received signal streams. This property is fulfilled if
the data carried within the symbols of the received
streams is random. Established algorithms that lead to a
separation are the JADE algorithm as a batch algorithm
and the fastICA algorithm that solves the problem
by extracting the independent components step by step.

3.1.1 JADE

The joint approximate diagonalization of eigenmatrices
(JADE) algorithm [1] is a batch procedure that solves
the separation problem.

The first step of this algorithm is to decorrelate the
input streams x. That is the nT ×nR matrix W has to
be calculated to fulfill

I = WRxxW
H 1 (3)

with Rxx = E
{

xxH
}

being the spatial correlation
matrix of the received signals. In the source separation
literature [2] [3] this step is also known as principle
component analysis and can be solved using a eigen-
value decomposition of Rxx. The decorrelation can be
computed by a multiplication of the received signal
streams x with the whitening matrix W.

z = Wx (4)

The utilization of second order information is not suffi-
cient to obtain independent signals. Therefore the JADE
algorithm additionally uses 4th order information. It
maximizes some elements of the cumulant matrix Qz =

1
W

H denotes the conjugate transpose i.e. the Hermitean of W.

cum
(

e?
i , ei, e

?
j , el,

)

obtained from the extracted signals
e defined in equation (6).

max
B

!
=

nT−1
∑

i,j,l=0

∣

∣cum
(

e?
i , ei, e

?
j , el,

)∣

∣

2
(5)

This optimization problem is solved by an eigenvalue
decomposition of Qz and a joint diagonalization of
the dominant eigenvectors rearranged as matrices. This
diagonalization leads to the unitary nT × nT matrix B

and the independent data streams

e = BH · z . (6)

A similar approach that needs less computational effort
is the SSARS algorithm presented in [4].

3.1.2 fastICA

Beside the JADE algorithm the fastICA algorithm is
organized in a different way [5] [6]. The basic idea
of this algorithm is to do a blind source extraction
(BSE) for each component and to prevent the same
signal from being extracted multiple times. It starts with
the whitening of the received data in the same way as
presented before in (4).

In order to extract signal number t out of the mixture
z (4) a randomly initialized extraction vector bt – a col-
umn vector of the nT×nT matrix B – is generated. In
order to preserve the signals to remain uncorrelated B

has to be a unitary matrix. Therefore bt is constrained
to form an orthonormal basis using the knowledge of
the vectors b0 . . .bt−1 obtained in former iterations.
To achieve this goal matrix

Bt = [b0,b1, . . .bt−1] (7)

containing the extraction vectors of the former itera-
tions is build. The randomly initialized vector bt is
orthogonalized to the former detected ones

b′
t = bt − BtB

H
t bt (8)

and normalized to a length of one

b′′
t = b′

t/ ||b
′
t|| . (9)

In order to determine bt we choose the maximization
of the kurtosis of a single signal as the criterion.

max
bt

JfastICA,t (et) = max
bt

E
{

|et|
4
}

= max
bt

E
{

∣

∣bH
t z

∣

∣

4
} (10)

This can be solved using a fixed point iteration in-
cluding the additional constraints (8) and (9) [6]. The
resulting signal streams e can be extracted by multiply-
ing the received signal with the matrix of all collected
extraction vectors B = BnT −1.

e = BH · z (11)



3.2 MIMO CMA
The idea of the constant modulus algorithm (CMA)
is to compare the amplitude of the equalized received
signal with a reference amplitude [7][8][9]. This com-
parison expressed in mathematical terms leads to a cost
function that has to be minimized. The general cost
function for MIMO CMA is

JCMA (C) =
nT−1
∑

t=0
E

{

(

|et|
2
− 1

)2
}

=
nT−1
∑

t=0
E

{

(

∣

∣cH
t x

∣

∣

2
− 1

)2
}

,

(12)
where et denotes the equalized component number t
of the output vector e. The component ct of the nR ×
nT CMA extraction matrix C = [c0, c1, . . . , cnT−1]
spatially filters the signal et. Separation of all signals
can be done by

e = CH · x . (13)

In order to minimize the CMA cost function (12) the
steepest descent algorithm is used.

C(i+1) = C(i) − µ
∂

∂C(i)
JCMA

(

C(i)
)

2 (14)

µ is the step factor of the gradient descent. The CMA
algorithm is initialized by a whitening matrix C0 = W

as described in equation (4) . This starts the CMA
algorithm with separation vectors pointing in directions
of uncorrelated sources of power and improves conver-
gence.

The Matrix C can be calculated using the update
equation

C(i+1) = C(i) − 4µE
{(

D
{

e(i)
}

− I
)

· x · e(i)H
}

.

(15)
where the operator D

{

e(i)
}

forms the diagonal matrix

D
{

e(i)
}

= diag

(

∣

∣

∣e
(i)
0

∣

∣

∣

2

,
∣

∣

∣e
(i)
1

∣

∣

∣

2

, . . . ,
∣

∣

∣e
(i)
nT−1

∣

∣

∣

2
)

. The

main problem with this algorithm is, that it is still
possible to resolve the same signal multiple times. This
will lead to very bad error rates of the algorithm as can
be seen in figure 3.

Therefore we will present three approaches to avoid
this problem. Two of them are already known from
different sources. A new approach presented here has
a slight connection to the approach of the fastICA
algorithm.

3.2.1 1st approach: correlation penalty

One approach to tackle the problem of extracting the
same signal multiple times was presented in [10]. The
idea of this approach is to minimize the correlation
of the extracted signals. This can be realized by cal-
culating the cross correlations of all signals in every
iteration step and adding the squared magnitude of the

2The superscript (i) denotes the iteration step.

off diagonal elements to the general MIMO CMA cost
function (12). This leads to the new cost function

Jcorr (C) = JCMA (C) +

nT−1
∑

k,l=0; k 6=l

∣

∣

∣ψ
(i)
k,l

∣

∣

∣

2

(16)

where

ψ
(i)
k,l = E

{

e
(i)
k · e

(i)
l

∗}

(17)

describe the correlation of the extracted signals e(i)k and
e
(i)
l as elements of a matrix

Ψ(i)
corr =













0 ψ
(i)
0,1 . . . ψ

(i)
0,nT−1

ψ
(i)
1,0 0 . . . ψ

(i)
1,nT−1

...
. . .

...

ψ
(i)
nT−1,0 ψ

(i)
nT−1,1 . . . 0 .













(18)
Note that (18) contains no diagonal elements.

Using this cost function leads to the update equation

C(i+1) = C(i)

−µ

(

4E

{(

D
{

e(i)
}

− I + Ψ
(i)
corr

H
)

· x · e(i)H
})

.

(19)

The computational effort of this approach can be
immense, because the correlation matrix Ψi

corr has to
be estimated in every iteration.

3.2.2 2nd approach: determinant penalty

Another idea to prevent the CMA algorithm to extract
the same signal twice can be found in [11]. The
basic idea of this approach is to minimize the linear
dependency of the separation vectors contained in C.
The linear dependency is measured here in terms of
the logarithm of the magnitude of the determinant of
C. This leads to the cost function

Jdet (C) = JCMA (C) − ln
∣

∣detCH
∣

∣ . (20)

For nearly linear dependent components in C the right
hand side term of (20) will grow to very high values.

The corresponding update equation can be calculated
to be

C(i+1) = C(i)

−µ

(

4E
{

(

D
{

e(i)
}

− I
)

· x · e(i)H
}

−
(

C(i)H
)−1

)

.

(21)

This drawback from the computational side of view is
that this update equation contains a matrix inversion
in every iteration.



3.2.3 3rd approach: subspace limitation

Motivated by the CMA approaches presented above and
the idea to successively separate signals we present a
new scheme to separate constant modulus signals from
a MIMO system.

As a first step we decorrelate the received signal
streams as described by equation (4). In order to extract
the signal number t from our whitened stream z we
start with a nR × 1 vector ct that is zero except for
a one at row t. This vector is orthogonalized to the
former vectors as done by the fastICA algorithm in
equations (8) and (9).

Then we adjust ct by the steepest descent algorithm
using the CMA cost function (12) trimmed down to
update only ct.

This leads to the update equation

c
(i+1)
t = c

(i)
t − 4µE

{(

∣

∣

∣e
(i)
t

∣

∣

∣

2

− 1

)

· z · e
(i)
t

H
}

.

(22)
After separating one signal we consider the known
separation vector using equations (8) and (9) to select
the next initialization in order to gain the next signal.

Compared to the update equation of the general
MIMO CMA (15) we need no additional computations
inside the iteration loop.

3.3 performance comparison

All separation methods presented so far will result in
separated data streams e. In order to compare their
performance in terms of bit error rates (BER) we use
a set up as depicted in figure 2.
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Fig. 2. source separation set up for BER measurements

Since the phase of every data stream et has not
been taken into account during the separation, every
data stream is rotated by a random phase factor and
permutated.

et,derot = et · e
−(arg E{e4

t})/4 (23)

Equation (23) points out an approach feasible for QPSK
signals. The average of the data signal taken to the
power of four will remove the data. The result can be
taken to estimate the phase rotation whereby a discrete
phase ambiguity (quadrant ambiguity) will remain. We
can take the derotated signals to decide the symbol
positions s̃t. In order to do the bit demapping of the
datastreams we have to solve the quadrant ambiguity

and the permutation problem. In this paper we neglect
this problem and calculate a propper estimation of the
permutation matrix P̂ by using all transmitted data.
(The quadrant ambiguity problem can be solved by
e.g. using differential coding, while the permutation
problem can be used by including addresses that can
also be used by higher layers.)

P̂ = E
{

s̃ · sH
}

(24)

Using P̂ we get the assignments by successively tak-
ing the maximum absolute values. The corresponding
phase factors can be used to determine the quadrant
ambiguity.
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Fig. 3. BER error rates of all CMA approaches

Figure 3 depicts the simulation results of the three
CMA approaches as well as two reference curves. One
reference curve is the linear zero forcing filter and
one is the MMSE solution with ideally known channel
matrix to equalize the spatial mixture. For the CMA
approaches we use a step factor of µ = 0.01 and used
300 iterations (not optimized).

From figure 3 (CMA curve) we can state that
it is absolutely necessary to prevent the CMA from
detecting one signal multiple times. The other 3 CMA
approaches work well but suffer from an error floor
due to the steepest descent algorithm; We reach BER
regions where an application of channel coding should
be possible. As expected the performance of the al-
gorithms is between the zero forcing and the MMSE
solution for the equalization of the spatial channel.
The new subspace limitation approach has the best
performance of all CMAs because it includes a very
hard constraint to avoid same signals.

Figure 4 shows bit error curves of the classical
source separation algorithms. They gain comparable
performance to the CMA with subspace limitation, but
do not show an error floor, because these algorithms
don’t use a steepest descent.
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Fig. 4. BER error rates of the source separation approaches using
HOS

4 Application of Iteration Tech-
niques - uncoded

The algorithms presented until this point only approxi-
mated linear spatial filters in order to separate the data
streams. In this section we try to improve the detection
performance by applying a cancellation scheme. This
will utilize the finite symbol alphabet that was only
used marginally till now.
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We will use a system as depicted in figure 5. We start
with coarsely decided symbols s̃0 . . . s̃nT−1 that were
obtained using a blind separation method as depicted
in figure 2. Using this data we produce a first channel
estimation H̃(0). This channel estimation will be used
to detect the symbols once more using the VBLAST
detection algorithm as presented in [12]. We use the
MMSE variant of the VBLAST algorithm but also other
multi layer detection schemes are possible e.g. SQRD
[13] [14].
Using the output of the VBLAST detector for improved
channel estimation in combination with a new detection
of the data will iteratively lead to better results.

Since this detection loop is initialized in a blind way
and the VBLAST algorithm only decides symbol posi-
tions the whole detection scheme remains blind.

Because of quadrant ambiguities of the initially
used symbols s̃0 . . . s̃nT−1 we have to prove that the
proposed scheme works. Therefore we define symbol
matrices from the vectors used so far. The transmitted
data streams are arranged in matrix S

S = [s(0), s(1), . . . , s(L− 1)] (25)

and the received and coarsely decided data streams in
matrix S̃

S̃ = [s̃(0), s̃(1), . . . , s̃(L− 1)] . (26)

S̃ ≈ ΦPS (27)

We can formulate the quadrant ambiguity of the
decision by equation (27). Whereby P is a random
permutation matrix and Φ = diag [φ0, φ1, . . . φnT −1]
is a diagonal matrix modelling the discrete quadrant
ambiguities. The equal sign is only valid, if there are
no decision errors.

In order to use the coarse decision results S̃ for
channel estimation we calculate

H̃ = X · S̃+ 3 . (28)

Assuming no noise in the system will lead to

H̃ = HS · S̃+

= HS · S̃H
(

S̃S̃H
)−1

.
(29)

If we introduce equation (27) and assume correct deci-
sions4 we get

H̃ = HS · SHPHΦH
(

SPΦΦHPHSH
)−1

. (30)

Because Φ and P are unity matrices (ΦΦH = I and
PPH = I) we can simplify the expression to

H̃ = HS · SHPHΦH
(

SSH
)−1

. (31)

If we assume that S contains uncorrelated signal
streams of sufficient length L, the terms S · SH will
be approximately diagonal matrices. Therefore we can
further simplify to

H̃ = H · PHΦH . (32)

This leads to an estimation of the channel matrix H̃

in a permutated form where every column contains a
quadrant error. If we apply this channel estimation in
the VBLAST algorithm we get symbols s̃(i)0 , . . . s̃

(i)
nT−1

(figure 5) with the corresponding discrete phase ambi-
guities φ0, . . . , φnT−1, but this will not influence our
further detection and cancellation process, as long as
we only want to decide the symbol positions.

To summarize: We found an iterative estimation and
detection scheme that utilizes the finite symbol alphabet
and remains completely blind.

3The + sign denotes the Moore-Penrose pseudo inverse.
4The terms in (27) are equal.



4.1 performance of the proposed iterative
scheme

In order to show the feasibility of our detection ap-
proach we present some BER results of the transmis-
sion system presented in figure 1. As an initialization
we exemplary use the output of the JADE algorithm.
The permutation problem was solved in the same way
as above (24).
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Fig. 6. BER of JADE with iterative VBLAST detection

Figure 6 depicts the results of our simulations.
Beside the reference curves of the MMSE and zero
forcing detection the raw VBLAST detection with ideal
known channel matrix was introduced as a further
reference.
Using our new iterative scheme (figure 5) we can
observe a gain of about 10 dB at a bit error rate of 10−3

(JADE it=5) compared to the classical source separation
using only the JADE algorithm. For this improvement
we need only 5 iterations of detections and channel
estimations. We nearly reach the curve of the VBLAST
algorithm with known channel matrix H .5 We have
to emphasize that the whole detection scheme remains
blind since no reference data is used to gain the symbol
decisions.

5 Inclusion of channel coding
In order to improve the overall robustness against
noise and to improve the iterative estimation loop we
introduce channel coding in our system. For channel
coding we use the (5, 7)8 convolutional code with tail
bits in each stream as depicted in figure 7.

On the receiving side we replace every decision
device with a Viterbi decoder. But a simple replacement
will lead to a problem: The input signal of the decision
device in figure 2 has to cope with a quadrant ambigu-
ity of the signal. This can not work with a convolutional

5We can even decrease the gap to the detection with ideally known
channel matrix if we increase the length of the data block L.
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Fig. 7. transmission system with channel coding

code, because a phase rotated QPSK signal will lead to
an invalid codeword. Therefore we introduce a further
phase comparison with the transmitted data (after the
hard decision of s̃0 . . . s̃nT−1) in order to make the
Viterbi decoding process possible.
The decision device inside the iterations using the
VBLAST algorithm can be replaced by a Viterbi de-
tector without any problems.
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Fig. 8. BER or coded multi layer transmission

Figure 8 depicts the results of a Monte Carlo sim-
ulation using such a set up. We can find only a small
coding gain between the uncoded (JADE) and the coded
(cJADE) scheme. This is due to the hard decision input
of the Viterbi decoder. When using VBLAST iterations
in order to improve the channel estimation, we can only
see a coding gain at low SNRs. This is a common
behavior of coded multi layer systems with VBLAST.
Since the SNR gets better, the interference cancellation
process inside the VBLAST can’t be improved by a
coder. Based on this first analysis we can state that
it is a promising approach to introduce coding in the
system. But we have to cope the problem of quadrant
ambiguity of the incoming signal in the input of the
decision devices. Therefore further work will be done
on tackling this problem.



6 Summary and Conclusions

Blind source separations techniques are promising in
connection with MIMO communication systems. Their
strength is that they can extract signal streams utilizing
only some statistical properties of the signals. They do
not need any reference data.
In this paper we presented in detail some separation
methods that are based on the MIMO constant modulus
property. We presented a new computational efficient
CMA approach using a subspace limitation for MIMO
systems.
We used the blind separation methods to initialize
MIMO detection schemes and to improve channel esti-
mation and data detection in an iterative way. Therefore
we pointed out that these iterations can be done without
reference data, so that the overall symbol detection
algorithm remains blind. We have shown that we gain
about 10 dB compared to the classical separation
approaches and reach nearly the performance of the
VBLAST detection algorithm with known channel ma-
trix.
We presented a first step to combine the proposed
iterative scheme with channel coding and pointed out
directions to further improvements.
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