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Abstract— In this paper, the 3GPP downlink eigenbeamformer
scheme is investigated. The eigenbeamformer scheme performs
an eigendecomposition (EVD) of the spatial long-term covariance
matrix to obtain beamforming weights. Diversity gains are
obtained due to switching between so-called eigenbeams. Since
the EVD is carried out by the mobile station, computationally
efficient algorithms are required. We show that the computational
efforts can be drastically reduced by exploiting the quasi-
stationarity of the long-term spatial covariance. For a given
feedback rate, the performance of closed-loop schemes drop
at high velocities due to delay introduced by feedback of side
information. To cope with this problem, an efficient spatio-
temporal prediction scheme is proposed. Our simulations, in
which realistic coding, feedback delay, channel estimation and
quantization of eigenbeams are considered, show that for a
given target block error rate, the operational range, i.e. the
maximally allowed speed of the mobile station, can then be
significantly increased. Furthermore, measurements with our
hardware demonstrator are used to study eigenbeamforming
under realistic propagation conditions.

I. I NTRODUCTION

Future mobile and wireless applications such as multimedia
services will require significantly higher data rates, better
QoS and lower costs as compared to current systems. With
conventional single antenna systems, it is usually difficult
to meet these high requirements on data rate, link quality,
spectral efficiency, and mobility. Therefore, antenna arrays will
be employed at least at the base station (BS). Due to the
asymmetric nature of most data services (internet downloads,
broadcast services) there is a demand on increased downlink
capacity. Several multiple-input multiple-output (MIMO)and
transmit diversity concepts are currently proposed to 3GPP
for standardization. While MIMO schemes imply multiple
antennas at both ends of a transmission link to increase
the throughput, transmit diversity schemes and/or beamform-
ing schemes which intend to raise the signal-to-noise-and-
interference ratio (SINR) at the mobile station (MS) generally
require only one receive antenna, thus being attractive to build
low cost mobile stations. In this paper we focus on the down-
link eigenbeamformer scheme [1] which is based on [2]. The
beamforming weights are obtained by an eigendecomposition
(EVD) of the spatial long-term covariance matrix. Since the
EVD is performed by the MS, highly efficient algorithms are
necessary. We will show in Sec. III-A that the computational

complexity can be drastically reduced by exploiting the quasi-
stationarity of the long-term spatial covariance [3].

Fading, especially flat fading, is one of the main reasons
to affect the downlink capacity. In order to improve this,
spatial diversity can be exploited by switching between weight
vectors (eigenbeams) [1]. For a given feedback rate, the
performance of closed-loop schemes drops at higher velocities
due to limited uplink bandwidth in connection with a delay
involved in the feedback of side information [4]. To cope with
loop delays, an efficient spatio-temporal prediction scheme is
proposed in Sec. III-B. We will show by simulation including
channel estimation and quantization of eigenbeams that the
operational range, i.e. the maximal allowed speed of the MS
for a given target block error rate (BLER), can then be
significantly increased.

In addition measurements with our hardware demonstrator
are undertaken to study eigenbeamforming under realistic
propagation conditions. Despite of the quite simple measure-
ment setup a first impression of available gains due to adaptive
transmit beamforming are obtained.

II. SPATIAL CHANNEL MODEL

In [5][6], stochastic multiple-input-multiple-output (MIMO)
radio channel models are derived from the classical tap de-
lay line model that is based on the wide-sense stationary
uncorrelated scattering (WSSUS) assumption whereL inde-
pendent time-varying taps model the signal dispersion in a
multipath environment. Let the BS haveM transmit antennas.
The tap fading process is extended by incorporating long-
term spatial correlationsρm1,m2

between the signals from
different transmit antennasm1 andm2. The matrix capturing
all spatial correlation coefficients for tapl is denoted by
Rl ∈ C

M×M . It is assumed that theM signals from the
antennas associated with tap delayl arrive simultaneously
at the MS. The channel coefficients of different antennasm
at delay l, hl,m, can be modeled by a linear combination
of M independent normalized complex Gaussian processes
gl(t) = [gl,1(t), gl,2(t), . . . , gl,M (t)]T with required power
density spectrum, leading to

hl(t) = R
1/2

l gl(t). (1)



The projection matrixR1/2

l ∈ C
M×M is obtained using

a standard matrix square root decomposition methodRl =

R
1/2

l R
1/2H
l [7, p.149].

Assume that at the BS the antenna weightsw∗ =
[w∗

1
(t), w∗

2
(t), . . . , w∗

M (t)]T are applied [8], then the signal
received at the MS (after descrambling and despreading),
which is equipped with one receive antenna, can be written
as

r(t) =

L
∑

l=1

[wHs(t − τl)]hl(t) + n(t), (2)

wheres(t) is the dedicated user signal prior to spreading
and scrambling, andn(t) denotes the additive white Gaussian
noise (AWGN).

Using the channel model described in [5], the normalized
long-term spatial correlation matrix is given by the superpo-
sition of time discrete micro paths components which cannot
be resolved by the receiver

Rl =
1

σl

∑

µ∈Ll

σµa(φµ, θµ)aH(φµ, θµ), (3)

whereLl, a(φµ, θµ) denote a class of non-resolvable micro
paths associated with the temporal tapl, the steering vector
as a function of direction of departure (DOD) in azimuth
φ and elevationθ, respectively. The power per micro path
is denoted byσµ, and total power of superposed paths is
denoted byσl. It is assumed that the long-term proper-
ties behave quasi-stationary (magnitudes, angles-of-departure
changes very slowly over several 100 ms).

III. 3GPP EIGENBEAMFORMING SCHEME

The main idea behind the eigenbeamformer method is the
decomposition of the directional fading channel (2) into it’s
fundamental processes in order to provide a decorrelation
of spatial diversity branches (see [1][2]). Using orthogonal
common pilot sequences (CPICHs) transmitted from the BS,
the MS estimates the short-term spatial covariance matrix
averaged over the temporal taps of the channel. In the sequel
we will restrict to the flat fading case to simplify the signal
model. Therefore, omitting the temporal tap indexl from (1)
the short-term spatial covariance can be calculated as follows:

RST (k) = h(k)hH(k), (4)

where k is the time slot index. The long-term spatial
covariance matrix is obtained by averaging over the short-term
covariance matrices applying the forgetting factorρ

R(k) = ρR(k − 1) + (1 − ρ)RST (k). (5)

In general it is reasonable to assume a spatially quasi-
stationary environment (the long-term covariance is nearly
constant over several 100 time slots [9]), consequently the
forgetting factorρ is set close to unity. Decorrelation in space
is achieved by an eigenanalysis of the Hermitian matrixR
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Fig. 1: 3GPP eigenbeamforming scheme according to [1]

RW = WD, (6)

where the orthonormal column vectorswm of W are
eigenvectors (in the sequel termedeigenbeams) of R and
D = diag[d1, d2, . . . , dM ] is a diagonal matrix with the cor-
responding eigenvalues. Without loss of generality we assume
d1 > d2 > . . . > dr > . . . > dM .

A subset of the strongestr eigenbeams out ofM eigen-
beams is fed back to the BS. Exploiting the quasi stationarity
of the long-term parameter (3) the feedback bits are distributed
over a large number of slots. In addition, a slot-by-slot
selection of the strongest eigenbeam is performed by the MS
according to

wmax(k) = arg max
wm

(wH
m(k)RST (k)wm(k)), (7)

i.e., the eigenbeamwm that maximizes the receive signal
power is selected and the indexm is sent to the BS which
applies the corresponding eigenbeam after some delay (see
Fig. 1).

A. Tracking the Eigenbeams

The benefit of the 3GPP downlink eigenbeamforming
scheme is that, since the eigenbeams are calculated by the MS,
diversity can be gained by beam-switching. On the other hand
the eigendecomposition must be performed at the MS which
has normally tight energy constraints (small battery supply)
in connection with reduced computational capabilities. Inthis
section we propose computationally efficient EVD algorithms,
which exploit the quasi-stationary property of spatial long-
term covariance matrix totrack the eigenspace.

In contrast to batch EVD methods like the symmetric
QR-algorithm the following algorithms can make use of the
eigenvectors calculated from past time slots as an approx-
imation of the current one, based on the assumption that
the spatial covariance changes very slowly with time. Note,
although we will use the time slot indexk in the sequel, the
eigendecomposition is practically performed only once every
several 100 ms up to one second [4]. Concrete update rates
will be discussed in Section IV.



1) Jacobi algorithm:The Jacobi algorithm is one possible
method to solve the symmetric eigenvalue problem (6). The
idea behind the Jacobi algorithm is to systematically reduce
the energy stored in off-diagonal elements and shift it to the
main diagonal elements [7]. This iterative diagonalization is
done by Jacobi rotations (unitary transforms)Ji(k) ∈ C

M×M

W(k) =
∏

i

Ji(k),

D(k) = WH(k)R(k)W(k), (8)

where the approximated eigenspaceW(k) of R(k) is the
product of all previously applied rotations, andi the iteration
index. The Jacobi rotation is defined by:

Ji(k) =
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. (9)

The basic step in the Jacobi eigenvalue procedure involves
computing a cosine-sine pair (9). The termejϕ is chosen
such that the diagonalization of the 2-by-2 submatrix from
R reduces to a real symmetric problem and the symmetric
Schur decomposition [7, p.427] can be used to calculatecos(φ)
and sin(φ). The index pair(p, q) is chosen in a row-by-row
manner (cyclic Jacobi method) to avoid searching the off-
diagonal elements with maximal squared magnitude at the
cost of slightly reduced convergence speed. The Hermitian
property of matrixR is sustained by unitary transformations,
therefore, cycling through the upper or lower triangular ofR

is sufficient. AfterM(M − 1)/2 iterations (called onesweep)
each off-diagonal element is zeroed once. Note that consec-
utive rotations will destroy previously obtained zeros. There
is no rigorous theory to predict the number of sweeps that
are required to a specific reduction of the off-diagonal norm.
On the other hand, the number of sweeps can be decreased
to reduce the computational complexity depending on the
application [10]. We will show by simulation that one sweep is
sufficient exploiting the quasi-stationary property of thespatial
covariance matrix. The previously calculated product sum of
rotation matricesW(k − 1) is a good approximation of the
eigenspace of the updatedR(k) (5). Therefore, it is beneficial
to apply the Jacobi iterations on thepre-multipliedversion of
the spatial covariance matrix, i.e. replacingR(k) with R̃(k)
in (8) [11]:

R̃(k) = WH(k − 1)R(k)W(k − 1). (10)

The Jacobi method does not directly incorporate the rank-
one update of the spatial covariance matrix into the EVD
process (as specialized subspace tracking algorithms do, e.g.
[12]) and runs independently of (5), therefore, the algorithm
may not overwriteR(k) directly, instead it iterates over acopy
of R(k).

2) Orthogonal Iteration: The so calledorthogonal itera-
tion is a straightforward extension of the well-known power
method. Ifr = 1 holds, the sequence of estimated eigenvectors
by the orthogonal iteration method is precisely the sequence
of vectors produced by the power method [7, p.410]. The
algorithm is outlined as follows:

Q0 = Wr(k − 1)
for i = 1, 2, . . . , imax do

Zi(k) = R(k)Qi−1(k)
Qi(k)RQR(k) = Zi(k) (QR-decomposition)

end for
Wr(k) = Qimax(k)

TABLE I: Orthogonal iteration method based on dimensionally re-
duced QR-decomposition. Previously calculated eigen-
vectors of the slowly time-varying spatial covariance are
used for initialization of the iteration loop at each EVD
update step.

The matrix Wr ∈ C
M×r consists of the firstr column

vectors ofW. At the first timek = 0, Wr(−1) is initialized
with an arbitrary orthonormal matrix, e.g. the firstr columns
of unity matrix. The dimensionally reduced QR-decomposition
is the core function of orthogonal iteration. Implementation
variants of the QR-decomposition are discussed in [13].

Normally, for most applications sophisticated acceleration
strategies such as Ritz acceleration and shifting are needed to
make the orthogonal iteration method applicable [7, p.422].

Regardless the poor convergence properties, we found that
for the eigenbeamforming scheme no further enhancements
of the algorithm in Tab. I are required. Furthermore, with
the same arguments as for the Jacobi tracking method we
can state thatWr(k − 1) is a good approximation of the
(dimensionally reduced) eigenspace ofR(k) since the spatial
covariance changes very slowly with time. Therefore,Q0 =
Wr(k − 1) is a good starting choice to provide fast enough
convergence. Instead of usingimax = 4 iterations for the power
method applied in [4] only1 iteration is required as shown in
Section IV.

3) Computational Complexity and Numerical Stability of
EVD Algorithms:The Jacobi algorithm has an inherent paral-
lel structure and therefore, it is suited for hardware implemen-
tation like specialized signal processor cores, which performs
the elementary rotations in hardware [14]. The complete
eigenspace instead of a subset of strongest eigenvectors is
computed. Moreover, the eigenvalues and -vectors calculated
by the cyclic Jacobi algorithm are not sorted. Therefore,
additional computational effort is needed to get ther strongest
eigenvectors used by the eigenbeamforming scheme. The two-
sided multiplication withW in (10) takes2(M3+(M−1)M2)



complex operations (multiplications and additions) for the
Jacobi algorithm, whereas in case of the orthogonal iteration
only multiplication withWr ∈ C

M×r is required (see Table
I) taking only rM2 + (M − 1)Mr operations. The QR-
decomposition based on Householder transformation takes
4(M2r − Mr2 + r3/3) operations; in contrast, the Jacobi
method roughly takes2M3 operations per sweep [7].

Note that the given complexity counts are only rough
estimates, when square root or inverse trigonometric functions
required to implement Jacobi rotations is neglected. However,
some special implementation techniques, e.g. approximated
Jacobi rotation, exist [14]. Table II summarizes the results from
above discussion.

Beside its low computational complexity, the favored or-
thogonal iteration method based on elementary Householder
reflections offers excellent numerical properties, i.e. itis
numerical stable (see references in [13][7]).

B. Predictive Beam-Switching

According to [1] the downlink eigenbeamformer scheme
selects the eigenbeam which maximizes theexpectedinstanta-
neous signal-to-noise ratio (7). To do so, the MS transmits the
corresponding beam-index to the BS, which applies the desired
transmit weight vector after some processing delay. In addition
to the measurement delay, i.e. the MS calculates the short-term
feedback information based on the already received slot, upto
two delay slots must be considered due to uplink transmission
and some processing delay at the BS. Consequently, for high
MS velocities the applied transmit weights are outdated due
to fast channel fluctuations. In the following, the total amount
of delay (in slots) is denoted asloop delayκ.

We can conclude from the underlying channel model that
the temporal short-term processing for the eigenbeam selection
can be analyzed independently from the spatial long-term pro-
cessing. To cope with the loop delay the channel coefficientsin
(7) can be replaced bypredictedchannel coefficients obtained
from a bank of M mutually independent linear complex-
valued predictors (i.i.d. temporal fading processes are assumed
in (1)). Leth(k+κ|k) denote the predicted channel coefficient
vector in the current slotk for the future slotk+κ, we obtain
from (7):

wmax = arg max
wm

(wH
mh(k + κ|k)hH(k + κ|k)wm), (11)

with

m = 1, 2, . . . ,M.

However, in the multiple-input-single-output (MISO) case,
channel estimation has to be performed for allM spatial paths
in order to calculate the spatial covariance. Nevertheless, the
MS can exploit the set of calculated eigenvectorsafter channel
estimation to reduce the complexity of consecutive short-term
processing. We are enabled to apply matrix multiplication with
W prior to the temporal prediction scheme

h̃(k) = WH
r h(k), (12)

where the dimensionally reduced channel coefficient vector
is denoted bỹh = [h̃1, h̃2, . . . , h̃r]

T .
By constraining ther predictors to be linear FIR filters of

orderNp − 1, the output of ther predictors at time slotk can
be described as follows
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(13)
wherep ∈ C

Np×1 are the coefficient vectors associated with
the r predictors. Therefore, (11) simplifies to

mrmax = arg max
mr

(h̃∗
mr

(k + κ|k)h̃mr
(k + κ|k)), (14)

with

mr = 1, 2, . . . , r.

As mentioned above, spatially uncorrelated coefficientsh̃mr

can be obtained with (12), if (6) holds. Then, we are able to
determine the prediction filter coefficients for each of ther
predictors separately. According to the minimum mean-square-
error (MMSE) criterion, the optimal weight vector is obtained
from the solution of the Wiener-Hopf equation :

Rmr
pmr

= rmr
, (15)

whereRmr
∈ C

Np×Np andrmr
∈ C

Np×1 are thetemporal
autocorrelation matrix and vector, respectively [15]. To deter-
mine Rmr

andrmr
the vectorh̃′

mr
= [h̃mr

(k − κ), h̃mr
(k −

κ − 1), . . . , h̃mr
(k − κ − Np + 1)]T is defined. It follows

Rmr
= E{h̃′

mr
h̃′H

mr
}, (16)

rmr
= E{h̃∗

mr
(k)h̃′

mr
}, (17)

where E{·} denotes the expectation, which can be prac-
tically calculated analogical to (5) assuming quasi-stationary
temporal fading processes. Thus exploiting the Toeplitz struc-
ture of Rmr

the Levinson-Durbin algorithm can be used
to solve (15), or alternatively, the Trench algorithm can be
applied to directly compute the matrix inversion. Both al-
gorithms exhibitO(N2

p ) computational complexity [7]. Note
that the explicit estimation of autocorrelationRmr

matrix is
required. This takes additionalO(N2

p ) operations. In order to



EVD algorithm flops M = 4, r = 2

Batch EVD (Symmetric QR) 9M3 576
Jacobi (1 sweep) 2M3 + 2(M3 + (M − 1)M2) 352
orthogonal iteration (1 iteration) 4(M2r − Mr2 + r3/3) + rM2 + (M − 1)Mr 131

TABLE II: Number of complex-valued operations. For the Jacobi method the two-sided pre-multiplication (10) is included. Since an EVD
takes place e.g. only once per second (1500 slots), the number of operations per slot is very low.

avoid explicit calculation of (inverse) autocorrelation matrix,
the RLS algorithm withO(N2

p ) complexity can be employed
[15]. Eq. (14) implies an absolute square operation after linear
prediction, thus thepower predictor is nonlinear. The authors
of [16] pointed out that the employed kind of power predictor
is optimal in the MMSE sense if the bias is removed according
to [16, Eq.(11)]. However, we found out by simulation (not
shown in this paper) that the bias removal does not observably
improve the results presented in Sec. IV.

IV. SIMULATION RESULTS

In order to evaluate the discussed algorithms, some simu-
lations were conducted. Since we are interested in an over-
all performance of the communication system, the bit error
rates (BERs) instead of mean-square-error results are used
to evaluate the subspace tracking algorithms. The transmit
power is normalized to the number of transmit antennas and
E{

∑

l |hl,m(t)|2} = 1 holds.
According to [1]M =4 Tx antennas and switching between

two, r = 2, eigenbeams are assumed. The array geometry is
set to uniform linear array (ULA), which is also the reference
topology in [17], with half-wavelength spacing. One user with
a bit rate of240 kbit/s (spreading factor 32) is considered. The
total power of the common pilot channels equals to the power
of the dedicated channel. All downlink intracell interferer are
mutually orthogonal since flat fading is assumed.

The prediction scheme consists of two predictors of order
10, and the RLS algorithm is used to adapt the filter coeffi-
cients.

The batch EVD and Jacobi algorithm were initialized with
the unity matrix, whereas for the orthogonal iteration method
the firstr=2 columns were used to initializeW. The number
of iterations (resp. sweeps) is set to 1 for the orthogonal
iteration and Jacobi algorithm. Since the feedback rate in a
UMTS Rel. 99 system is fixed to one bit per uplink slot,
there is a trade-off between the eigenspace update rate and
the number of bits per eigenvector, which affects the spatial
resolution. A detailed analysis is, however, out of the scope
of this paper.

The eigenvectors are quantized by using 3 bits for the phase
argument and 2 bits for the magnitude part of a complex
number. According to [1], one long-term bit and 14 short-
term bits are fed back every frame (15 slots). It has to be
mentioned that errors during uplink transmission of feedback
bits may occur. Consequently, additional redundancy for the
long-term bits and antenna weight verification is indispensable
for practical systems [8]. Here error-free uplink transmission
is assumed. A code rate ofrc =1/2 for the long-term bits and
one antenna as phase reference are used. The EVD update rate

Eb/N0 in dB →
B

E
R
→

50km/h ր
EVD
Jacobi
orthogonal iteration

120km/h
EVD
Jacobi
orthogonal iteration
ւ

0 5 10 15
10−4

10−3

10−2

10−1

Fig. 2: Spatially quasi-stationary environment: the MS moves par-
allel w.r.t. the BS antenna array axis. The angle spread is
fixed to 30

◦, therefore, this corresponds to a spatially highly
correlated case with one dominant eigenvalue. The distance
between the MS and the BS is set to500 m (perpendicular
to the array axis).

is 680 ms (i.e. (3 · 3bit phase+ 4 · 2bit amplitude) · 2beams·
1/rc) · 10 ms).

In the spatially quasi-stationary scenario, where the MS
moves on a trajectory as depicted by Fig. 2, no difference
between tracking and batch EVD is noticed. However, the
computational complexity can be drastically reduced compared
to the standard batch EVD method. The orthogonal iteration
yields nearly the same performance at the lowest computa-
tional cost. Note that ideally known channel state information
is assumed.

Next, we compare the conventional eigenbeamformer
scheme proposed to 3GPP [1] to the enhanced version in-
corporating subspace trackingand predictive beam-selection.
The spatially stationaryMicrocell scenario defined in [18] is
used. Channel estimation based on the mutually orthogonal
common pilot channels is performed. We simply average the
pilot symbols over one slot, since a Wiener smoothing filter
spanning over multiple slots would contribute an additional
processing delay. It can be seen that the reduced dimensional
prediction scheme (14) exhibits slightly better performance
compared to the conventional prediction scheme, and much
less computational complexity, i.e. 2 instead of 4 predictors
are required (see Fig. 3).

In realistic communication systems coded transmission is
employed. Therefore, one important figure of merit for link
level simulations is the BLER. The applied convolutional
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Fig. 3: Microcell environment with fixedEb/N0 =10 dB. The eigen-
beamformer uses eigenbeam tracking based on orthogonal
iteration and predictive beam-switching. The loop delay is
set to 2 (dash-dot lines) and 3 (solid lines).
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Fig. 4: Coded system performance: BLER vs. speed,Eb/N0 =4 dB,
Microcell environment. Both eigenbeamforming schemes
employ eigenbeam tracking based on orthogonal iteration,
whereas the proposed enhanced scheme benefits from pre-
dictive beam-switching. The loop delay is set to 2 (dash-dot
lines) and 3 (solid lines).

encoder (with raterc = 1/2) and the intra and inter frame
interleavers were implemented according to [19]. The trans-
mission time interval (TTI) is set to20 ms (i.e. two frames per
block). At the receiver a Max-Log-MAP-Decoder is applied
for decoding [20]. All other parameters are left unchanged
regarding to the uncoded system described above. In Fig. 4
BLERs for a system with one Tx antenna, the conventional and
the proposed enhanced predictive eigenbeamforming scheme
are depicted. The subspace tracking scheme based on or-
thogonal iteration from Sec. III-A is used. The predictive
eigenbeamforming scheme yields the lowest BLERs over the
whole range of considered speeds. For a fixed speed of the
MS an significant signal-to-noise gain can be obtained as it
can be seen from Fig. 5.
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Fig. 5: Coded system performance: BLER vs.Eb/N0, 50 km/h. The
loop delay is set to 2 (dash-dot lines) and 3 (solid lines).

V. M EASUREMENTS

To assess multiple antenna systems it is indispensable to
study the propagation aspects, i.e. to verify commonly applied
(statistical) assumptions made about the MIMO radio channel.
The objective of our MIMO hardware demonstrator is to
evaluate MIMO algorithms under non-idealized environments
deploying common hardware components. Moreover, thanks
to selectable frontend processing we are not restricted to a
specific radio interface standard.

A. A Multiple Antenna System for ISM-Band Transmission

The top-level system is diagrammed in Fig. 6. At the
workstation environment in-phase and quadrature (I/Q) data,
e.g. UMTS frames, are generated by the simulation system
of choice. The impulse shaping is done in the digital do-
main. The data is scaled and quantized to meet the hard-
ware demonstrator concerns and finally stored into a file.
Due to its wide distribution the USB interface is chosen
to connect the hardware demonstrator with the workstation.
To transfer the I/Q data via the USB interface we use a
customized application software which allows us to set several
parameters, like sample rate (from external or internal clock),
local oscillator (LO) frequency tuning value and assignment
of data files to corresponding antennas. Furthermore, in a
Matlab environment we can directly access the demonstrator
by calling a Matlab function [21]. This is useful for fully
automated measurements. Inside the demonstrator the I/Q data
is stored into digital buffers which are addressed in a circular
manner: the increment pointers for memory accesses wrap
to the beginning of the buffer when its end is reached. The
currently addressed I/Q words are fed to a digital-to-analog
converter (DAC), whose analog baseband output signals drive
the radio frequency (RF) stage, which performs up-conversion
to the desired RF frequency band.

At the receiver, the RF passband signal is down-converted
to the complex baseband and analog-to-digital converted. A
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Fig. 6: Principle block diagram of the Multiple Antenna System for ISM-band Transmission (MASI).

Fig. 7: The Multiple Antenna Transmitter for ISM-Band Transmis-
sion equipped with 8 modules.

snapshot is stored into a digital buffer. Because frame syn-
chronization is not implemented in hardware the receive buffer
has a length twice as large as that of the transmit buffer to
ensure that at least one complete frame is captured. The sample
rate is adjustable up to 80 MHz and may be chosen from a
set of internally predefined frequencies or an external source.
The request for extensibility of the hardware demonstrator
led to a modular architecture; for each antenna the connected
transmitter or receiver hardware has its own plug-in module
(see Fig. 7). The digital clock and LO signal is provided to
all modules by a central clock base to ensure inter module
synchronization of sample rate and carrier phase.

However, as a fixed sampling clock is used which is not
synchronized to the transmitter clock, symbol timing and car-
rier recovery have to be accomplished. This is done offline in
the digital domain. A more detailed of employed components
and already conducted measurements are given in [22].

B. Eigenbeamforming

To assess the eigenbeamforming scheme under real propaga-
tion scenarios we conducted a couple of simple measurements.

The number of antennas, used common pilot channels and
spreading factors are the same as in Sec. IV. The measure-
ments were performed in an indoor environment, i.e. we trans-
mitted between two adjacent office rooms of approx. 20 sqm
size each. The total transmit power per antenna was 17 dBm
(50 mW).

Since full-duplex wireless transmission is currently not
supported the existing wired local area network (LAN) infras-
tructure is used to realize the feedback channel (uplink). In
contrast to previously discussed eigenbeamforming schemes
only the strongest eigenbeam is fed back, i.e. fast slot-by-
slot beam-switching is not accomplished. The eigenvector is
updated every 3 seconds. The measurements are conducted in
a relative static environment, i.e. the transmitter and receiver
are placed at fixed positions inside the office rooms. However,
in case of a non-idealized static scenario e.g with persons
sitting inside the office rooms we observed a slightly changing
beamforming vector (Fig. 8). A remarkable increased SNR due
to eigenbeamforming can be observed as depicted in Fig. 8 and
Fig. 9. One has to emphasize that only one arbitrary specific
spatial scenario is presented here. In general any positivegain
w.r.t. to the 1 transmit antenna case can be observed depending
on the positions of the transmit antennas and the receive
antenna. However, this quite simple measurement scenario
gives a first impression of gains available from adaptive
transmit beamforming.

VI. CONCLUSIONS

We studied the 3GPP eigenbeamforming scheme with real-
istic feedback delay, quantization of eigenbeams and channel
estimation in spatially stationary and quasi-stationary environ-
ments. The conventional scheme exhibits a strong degradation
for relatively high mobile station velocities. It was shown
that due to the predictive short-term processing based on
the efficient spatio-temporal prediction scheme, a velocity
of 70 km/h and a fixed signal-to-noise ratio ofEb/N0 =
4 dB, the BLER is lowered from1.3 · 10−2(4.7 · 10−2) to
1.4 · 10−3(5.1 · 10−3) for a loop delay of 2 (3) slots. It can be
concluded that for a given BER/BLER the operational range,
i.e. the maximally allowed speed of the mobile station, can be
significantly increased. Furthermore, we have shown, by ex-
ploiting the quasi-stationarity of the spatial covariancematrix,
that the proposed eigenbeam tracking scheme can lower the
computational costs considerable. In addition measurements
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and the eigenbeamformer using 4 transmit antennas (pluses)
are depicted.

with our hardware demonstrator were accomplished to study
eigenbeamforming under realistic propagation conditions. This
quite simple measurement scenario give a first impression of
gains available from adaptive transmit beamforming.
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