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Abstract:
In this paper, the 3GPP downlink eigenbeamformer

scheme is investigated. The eigenbeamformer scheme per-
forms an eigendecomposition (EVD) of the spatial long-
term covariance matrix to obtain beamforming weights.
Diversity gains are obtained due to switching between so-
called eigenbeams. Since the EVD is carried out by the
mobile station, computationally efficient algorithms are re-
quired. We show that the computational efforts can be
drastically reduced by exploiting the quasi-stationarity of
the long-term spatial covariance. For a given feedback
rate, the performance of closed-loop schemes drop at high
velocities due to delay introduced by feedback of side in-
formation. To cope with this problem, an efficient spatio-
temporal prediction scheme is proposed. Our simulations,
in which realistic coding, feedback delay, channel estima-
tion and quantization of eigenbeams are considered, show
that for a given target block error rate, the operational
range, i.e. the maximally allowed speed of the mobile sta-
tion, can then be significantly increased.

1. Introduction

Future mobile and wireless applications such as mul-
timedia services will require significantly higher data
rates, better QoS and lower costs as compared to cur-
rent systems. With conventional single antenna systems,
it is usually difficult to meet these high requirements
on data rate, link quality, spectral efficiency, and mo-
bility. Therefore, antenna arrays will be employed at
least at the base station (BS). Due to the asymmetric na-
ture of most data services (internet downloads, broadcast
services) there is a demand on increased downlink ca-
pacity. Several multiple-input multiple-output (MIMO)
and transmit diversity concepts are currently proposed
to 3GPP for standardization. While MIMO schemes im-
ply multiple antennas at both ends of a transmission link
to increase the throughput, transmit diversity schemes
and/or beamforming schemes which intend to raise the
signal-to-noise-and-interference ratio (SINR) at the mo-
bile station (MS) generally require only one receive an-
tenna, thus being attractive to build low cost mobile sta-
tions. In this paper we focus on the downlink eigenbeam-
former scheme [1] which is based on [6]. The beam-
forming weights are obtained by an eigendecomposition
(EVD) of the spatial long-term covariance matrix. Since
the EVD is performed by the MS, highly efficient algo-
rithms are necessary. We will show in Sec. 3.1. that the
computational complexity can be drastically reduced by
exploiting the quasi-stationarity of the long-term spatial
covariance [19].

Fading, especially flat fading, is one of the main rea-
sons to affect the downlink capacity. In order to improve
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this, spatial diversity can be exploited by switching be-
tween weight vectors (eigenbeams) [1]. For a given feed-
back rate, the performance of closed-loop schemes drops
at higher velocities due to limited uplink bandwidth in
connection with a delay involved in the feedback of
side information [4]. To cope with loop delays, an ef-
ficient spatio-temporal prediction scheme is proposed in
Sec. 3.2.. We will show by simulation including channel
estimation and quantization of eigenbeams that the oper-
ational range, i.e. the maximal allowed speed of the MS
for a given target block error rate (BLER), can then be
significantly increased.

2. Spatial Channel Model

In [11][15], stochastic multiple-input-multiple-output
(MIMO) radio channel models are derived from the clas-
sical tap delay line model that is based on the wide-sense
stationary uncorrelated scattering (WSSUS) assumption
whereL independent time-varying taps model the sig-
nal dispersion in a multipath environment. Let the BS
haveM transmit antennas. The tap fading process is
extended by incorporating long-term spatial correlations
ρm1,m2

between the signals from different transmit an-
tennasm1 andm2. The matrix capturing all spatial cor-
relation coefficients for tapl is denoted byRl ∈ C

M×M .
It is assumed that theM signals from the antennas as-
sociated with tap delayl arrive simultaneously at the
MS. The channel coefficients of different antennasm at
delay l, hl,m, can be modeled by a linear combination
of M independent normalized complex Gaussian pro-
cessesgl(t) = [gl,1(t), gl,2(t), . . . , gl,M (t)]T with re-
quired power density spectrum, leading to

hl(t) = R
1/2
l gl(t). (1)

The projection matrixR1/2
l ∈ C

M×M is obtained us-
ing a standard matrix square root decomposition method
Rl = R

1/2
l R

1/2H
l [8, p.149].

Assume that at the BS the antenna weightsw∗ =
[w∗

1(t), w∗
2(t), . . . , w∗

M (t)]T are applied [18], then the
signal received at the MS (after descrambling and de-
spreading), which is equipped with one receive antenna,
can be written as

r(t) =
L

∑

l=1

[wHs(t − τl)]hl(t) + n(t), (2)

wheres(t) is the dedicated user signal prior to spread-
ing and scrambling, andn(t) denotes the additive white
Gaussian noise (AWGN).

Using the channel model described in [11], the nor-
malized long-term spatial correlation matrix is given by
the superposition of time discrete micro paths compo-
nents which cannot be resolved by the receiver



Rl =
1

σl

∑

µ∈Ll

σµa(φµ, θµ)aH(φµ, θµ), (3)

whereLl, a(φµ, θµ) denote a class of non-resolvable
micro paths associated with the temporal tapl, the steer-
ing vector as a function of direction of departure (DOD)
in azimuthφ and elevationθ, respectively. The power
per micro path is denoted byσµ, and total power of
superposed paths is denoted byσl. It is assumed that
the long-term properties behave quasi-stationary (mag-
nitudes, angles-of-departure changes very slowly over
several 100 ms).

3. 3GPP Eigenbeamforming Scheme

The main idea behind the eigenbeamformer method
is the decomposition of the directional fading channel
(2) into it’s fundamental processes in order to provide a
decorrelation of spatial diversity branches (see [1][6]).
Using orthogonal common pilot sequences (CPICHs)
transmitted from the BS, the MS estimates the short-
term spatial covariance matrix averaged over the tem-
poral taps of the channel. In the sequel we will restrict to
the flat fading case to simplify the signal model. There-
fore, omitting the temporal tap indexl from (1) the short-
term spatial covariance can be calculated as follows:

RST (k) = h(k)hH(k), (4)

wherek is the time slot index. The long-term spa-
tial covariance matrix is obtained by averaging over the
short-term covariance matrices applying the forgetting
factorρ

R(k) = ρR(k − 1) + (1 − ρ)RST (k). (5)

In general it is reasonable to assume a spatially
quasi-stationary environment (the long-term covariance
is nearly constant over several 100 time slots [16]), con-
sequently the forgetting factorρ is set close to unity.
Decorrelation in space is achieved by an eigenanalysis
of the Hermitian matrixR

RW = WD, (6)

where the orthonormal column vectorswm of W are
eigenvectors (in the sequel termedeigenbeams) of R and
D = diag[d1, d2, . . . , dM ] is a diagonal matrix with the
corresponding eigenvalues. Without loss of generality
we assumed1 > d2 > . . . > dr > . . . > dM .

A subset of the strongestr eigenbeams out ofM
eigenbeams is fed back to the BS. Exploiting the quasi
stationarity of the long-term parameter (3) the feedback
bits are distributed over a large number of slots. In addi-
tion, a slot-by-slot selection of the strongest eigenbeam
out of the strongestr eigenbeams is performed by the
MS according to

wmax(k) = arg max
wm

(wH
m(k)RST (k)wm(k)), (7)

i.e., the eigenbeamwm that maximizes the receive
signal power is selected and the indexm is sent to the BS
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Figure 1: 3GPP eigenbeamforming scheme according to [1]

which applies the corresponding eigenbeam after some
delay (see Fig. 1).

3.1. Tracking the Eigenbeams

The benefit of the 3GPP downlink eigenbeamform-
ing scheme is that, since the eigenbeams are calculated
by the MS, diversity can be gained by beam-switching.
On the other hand the eigendecomposition must be per-
formed at the MS which has normally tight energy con-
straints (small battery supply) in connection with re-
duced computational capabilities. In this section we pro-
pose computationally efficient EVD algorithms, which
exploit the quasi-stationary property of spatial long-term
covariance matrix totrack the eigenspace.

In contrast to batch EVD methods like the symmet-
ric QR-algorithm the following algorithms can make use
of the eigenvectors calculated from past time slots as an
approximation of the current one, based on the assump-
tion that the spatial covariance changes very slowly with
time. Note, although we will use the time slot indexk
in the sequel, the eigendecomposition is practically per-
formed only once every several 100 ms up to one sec-
ond [4]. Concrete update rates will be discussed in Sec-
tion 4..

3.1.1. Jacobi algorithm

The Jacobi algorithm is one possible method to solve the
symmetric eigenvalue problem (6). The idea behind the
Jacobi algorithm is to systematically reduce the energy
stored in off-diagonal elements and shift it to the main
diagonal elements [8]. This iterative diagonalization is
done by Jacobi rotations (unitary transforms)Ji(k) ∈
C

M×M

W(k) =
∏

i

Ji(k),

D(k) = WH(k)R(k)W(k), (8)

where the approximated eigenspaceW(k) of R(k) is
the product of all previously applied rotations, andi the
iteration index. The Jacobi rotation is defined by:
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The basic step in the Jacobi eigenvalue procedure in-
volves computing a cosine-sine pair (9). The termejϕ is
chosen such that the diagonalization of the 2-by-2 sub-
matrix fromR reduces to a real symmetric problem and
the symmetric Schur decomposition [8, p.427] can be
used to calculatecos(φ) and sin(φ). The index pair
(p, q) is chosen in a row-by-row manner (cyclic Jacobi
method) to avoid searching the off-diagonal elements
with maximal squared magnitude at the cost of slightly
reduced convergence speed. The Hermitian property of
matrixR is sustained by unitary transformations, there-
fore, cycling through the upper or lower triangular of
R is sufficient. AfterM(M − 1)/2 iterations (called
one sweep) each off-diagonal element is zeroed once.
Note that consecutive rotations will destroy previously
obtained zeros. There is no rigorous theory to predict
the number of sweeps that are required to a specific re-
duction of the off-diagonal norm. On the other hand, the
number of sweeps can be decreased to reduce the com-
putational complexity depending on the application [9].
We will show by simulation that one sweep is sufficient
exploiting the quasi-stationary property of the spatial co-
variance matrix. The previously calculated product sum
of rotation matricesW(k − 1) is a good approximation
of the eigenspace of the updatedR(k) (5). Therefore,
it is beneficial to apply the Jacobi iterations on thepre-
multiplied version of the spatial covariance matrix, i.e.
replacingR(k) with R̃(k) in (8) [14]:

R̃(k) = WH(k − 1)R(k)W(k − 1). (10)

The Jacobi method does not directly incorporate the
rank-one update of the spatial covariance matrix into
the EVD process (as specialized subspace tracking al-
gorithms do, e.g. [20]) and runs independently of (5),
therefore, the algorithm may not overwriteR(k) di-
rectly, instead it iterates over acopyof R(k).

3.1.2. Orthogonal Iteration

The so calledorthogonal iterationis a straightforward
extension of the well-known power method. Ifr = 1
holds, the sequence of estimated eigenvectors by the or-
thogonal iteration method is precisely the sequence of
vectors produced by the power method [8, p.410]. The
algorithm is outlined as follows:

Q0 = Wr(k − 1)
for i = 1, 2, . . . , imax do

Zi(k) = R(k)Qi−1(k)
Qi(k)RQR(k) = Zi(k) (QR-decomposition)

end for
Wr(k) = Qimax(k)

Table 1: Orthogonal iteration method based on dimensionally
reduced QR-decomposition. Previously calculated
eigenvectors of the slowly time-varying spatial co-
variance are used for initialization of the iteration
loop at each EVD update step.

The matrixWr ∈ C
M×r consists of the firstr col-

umn vectors ofW. At the first timek = 0, Wr(−1)
is initialized with an arbitrary orthonormal matrix, e.g.
the firstr columns of unity matrix. The dimensionally
reduced QR-decomposition is the core function of or-
thogonal iteration. Implementation variants of the QR-
decomposition are discussed in [13].

Normally, for most applications sophisticated acceler-
ation strategies such as Ritz acceleration and shifting are
needed to make the orthogonal iteration method applica-
ble [8, p.422].

Regardless the poor convergence properties, we found
that for the eigenbeamforming scheme no further en-
hancements of the algorithm in Tab. 1 are required.
Furthermore, with the same arguments as for the Ja-
cobi tracking method we can state thatWr(k − 1) is
a good approximation of the (dimensionally reduced)
eigenspace ofR(k) since the spatial covariance changes
very slowly with time. Therefore,Q0 = Wr(k− 1) is a
good starting choice to provide fast enough convergence.
Instead of usingimax = 4 iterations for the power method
applied in [4] only1 iteration is required as shown in
Section 4..

3.1.3. Computational Complexity and Numerical
Stability of EVD Algorithms

The Jacobi algorithm has an inherent parallel structure
and therefore, it is suited for hardware implementation
like specialized signal processor cores, which performs
the elementary rotations in hardware [10]. The complete
eigenspace instead of a subset of strongest eigenvectors
is computed. Moreover, the eigenvalues and -vectors
calculated by the cyclic Jacobi algorithm are not sorted.
Therefore, additional computational effort is needed to
get ther strongest eigenvectors used by the eigenbeam-
forming scheme. The two-sided multiplication withW
in (10) takes2(M3 + (M − 1)M2) complex operations
(multiplications and additions) for the Jacobi algorithm,
whereas in case of the orthogonal iteration only mul-
tiplication with Wr ∈ C

M×r is required (see Table
1) taking only rM2 + (M − 1)Mr operations. The
QR-decomposition based on Householder transforma-
tion takes4(M2r − Mr2 + r3/3) operations; in con-
trast, the Jacobi method roughly takes2M3 operations
per sweep [8].

Note that the given complexity counts are only rough
estimates, when square root or inverse trigonometric



functions required to implement Jacobi rotations is ne-
glected. However, some special implementation tech-
niques, e.g. approximated Jacobi rotation, exist [10]. Ta-
ble 2 summarizes the results from above discussion.

Beside its low computational complexity, the favored
orthogonal iteration method based on elementary House-
holder reflections offers excellent numerical properties,
i.e. it is numerical stable (see references in [13][8]).

3.2. Predictive Beam-Switching

According to [1] the downlink eigenbeamformer
scheme selects the eigenbeam which maximizes theex-
pectedinstantaneous signal-to-noise ratio (7). To do so,
the MS transmits the corresponding beam-index to the
BS, which applies the desired transmit weight vector
after some processing delay. In addition to the mea-
surement delay, i.e. the MS calculates the short-term
feedback information based on the already received slot,
up to two delay slots must be considered due to uplink
transmission and some processing delay at the BS. Con-
sequently, for high MS velocities the applied transmit
weights are outdated due to fast channel fluctuations. In
the following, the total amount of delay (in slots) is de-
noted asloop delayκ.

We can conclude from the underlying channel model
that the temporal short-term processing for the eigen-
beam selection can be analyzed independently from the
spatial long-term processing. To cope with the loop de-
lay the channel coefficients in (7) can be replaced by
predictedchannel coefficients obtained from a bank of
M mutually independent linear complex-valued predic-
tors (i.i.d. temporal fading processes are assumed in (1)).
Let h(k + κ|k) denote the predicted channel coefficient
vector in the current slotk for the future slotk + κ, we
obtain from (7):

wmax = arg max
wm

(wH
mh(k + κ|k)hH(k + κ|k)wm),

(11)

with

m = 1, 2, . . . ,M.

However, in the multiple-input-single-output (MISO)
case, channel estimation has to be performed for allM
spatial paths in order to calculate the spatial covariance.
Nevertheless, the MS can exploit the set of calculated
eigenvectorsafterchannel estimation to reduce the com-
plexity of consecutive short-term processing. We are en-
abled to apply matrix multiplication withW prior to the
temporal prediction scheme

h̃(k) = WH
r h(k), (12)

where the dimensionally reduced channel coefficient
vector is denoted bỹh = [h̃1, h̃2, . . . , h̃r]

T .

By constraining ther predictors to be linear FIR filters
of orderNp−1, the output of ther predictors at time slot

k can be described as follows
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(13)
wherep ∈ C

Np×1 are the coefficient vectors associ-
ated with ther predictors. Therefore, (11) simplifies to

mrmax = arg max
mr

(h̃∗
mr

(k + κ|k)h̃mr
(k + κ|k)), (14)

with

mr = 1, 2, . . . , r.

As mentioned above, spatially uncorrelated coefficients
h̃mr

can be obtained with (12), if (6) holds. Then, we
are able to determine the prediction filter coefficients for
each of ther predictors separately. According to the
minimum mean-square-error (MMSE) criterion, the op-
timal weight vector is obtained from the solution of the
Wiener-Hopf equation :

Rmr
pmr

= rmr
, (15)

whereRmr
∈ C

Np×Np and rmr
∈ C

Np×1 are the
temporalautocorrelation matrix and vector, respectively
[12]. To determineRmr

and rmr
the vectorh̃′

mr
=

[h̃mr
(k−κ), h̃mr

(k−κ−1), . . . , h̃mr
(k−κ−Np+1)]T

is defined. It follows

Rmr
= E{h̃′

mr
h̃′H

mr
}, (16)

rmr
= E{h̃∗

mr
(k)h̃′

mr
}, (17)

whereE{·} denotes the expectation, which can be
practically calculated analogical to (5) assuming quasi-
stationary temporal fading processes. Thus exploiting
the Toeplitz structure ofRmr

the Levinson-Durbin al-
gorithm can be used to solve (15), or alternatively, the
Trench algorithm can be applied to directly compute the
matrix inversion. Both algorithms exhibitO(N2

p ) com-
putational complexity [8]. Note that the explicit esti-
mation of autocorrelationRmr

matrix is required. This
takes additionalO(N2

p ) operations. In order to avoid
explicit calculation of (inverse) autocorrelation matrix,
the RLS algorithm withO(N2

p ) complexity can be em-
ployed [12]. Eq. (14) implies an absolute square oper-
ation after linear prediction, thus thepowerpredictor is
nonlinear. The authors of [7] pointed out that the em-
ployed kind of power predictor is optimal in the MMSE
sense if the bias is removed according to [7, Eq.(11)].
However, we found out by simulation (not shown in this
paper) that the bias removal does not observably improve
the results presented in Sec. 4..



EVD algorithm flops M = 4, r = 2

Batch EVD (Symmetric QR) 9M3 576
Jacobi (1 sweep) 2M3 + 2(M3 + (M − 1)M2) 352
orthogonal iteration (1 iteration) 4(M2r − Mr2 + r3/3) + rM2 + (M − 1)Mr 131

Table 2: Number of complex-valued operations. For the Jacobi method the two-sided pre-multiplication (10) is included. Since an
EVD takes place e.g. only once per second (1500 slots), the number ofoperations per slot is very low.

4. Simulation Results

In order to evaluate the discussed algorithms, some
simulations were conducted. Since we are interested in
an overall performance of the communication system,
the bit error rates (BERs) instead of mean-square-error
results are used to evaluate the subspace tracking algo-
rithms. The transmit power is normalized to the number
of transmit antennas andE{

∑

l |hl,m(t)|2} = 1 holds.
According to [1]M = 4 Tx antennas and switching

between two,r=2, eigenbeams are assumed. The array
geometry is set to uniform linear array (ULA), which is
also the reference topology in [2], with half-wavelength
spacing. One user with a bit rate of240 kbit/s (spread-
ing factor 32) is considered. The total power of the com-
mon pilot channels equals to the power of the dedicated
channel. All downlink intracell interferer are mutually
orthogonal since flat fading is assumed.

The prediction scheme consists of two predictors of
order 10, and the RLS algorithm is used to adapt the filter
coefficients.

The batch EVD and Jacobi algorithm were initialized
with the unity matrix, whereas for the orthogonal itera-
tion method the firstr=2 columns were used to initialize
W. The number of iterations (resp. sweeps) is set to 1
for the orthogonal iteration and Jacobi algorithm. Since
the feedback rate in a UMTS Rel. 99 system is fixed to
one bit per uplink slot, there is a trade-off between the
eigenspace update rate and the number of bits per eigen-
vector, which affects the spatial resolution. A detailed
analysis is, however, out of the scope of this paper.

The eigenvectors are quantized by using 3 bits for
the phase argument and 2 bits for the magnitude part
of a complex number. According to [1], one long-term
bit and 14 short-term bits are fed back every frame (15
slots). It has to be mentioned that errors during uplink
transmission of feedback bits may occur. Consequently,
additional redundancy for the long-term bits and antenna
weight verification is indispensable for practical systems
[18]. Here error-free uplink transmission is assumed. A
code rate ofrc = 1/2 for the long-term bits and one an-
tenna as phase reference are used. The EVD update rate
is680 ms (i.e. (3·3bit phase+4·2bit amplitude)·2beams·
1/rc) · 10 ms).

In the spatially quasi-stationary scenario, where the
MS moves on a trajectory as depicted by Fig. 2, no differ-
ence between tracking and batch EVD is noticed. How-
ever, the computational complexity can be drastically
reduced compared to the standard batch EVD method.
The orthogonal iteration yields nearly the same perfor-
mance at the lowest computational cost. Note that ide-
ally known channel state information is assumed.

Next, we compare the conventional eigenbeamformer
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Figure 2: Spatially quasi-stationary environment: the MS
moves parallel w.r.t. the BS antenna array axis. The
angle spread is fixed to30

◦, therefore, this corre-
sponds to a spatially highly correlated case with one
dominant eigenvalue. The distance between the MS
and the BS is set to500 m (perpendicular to the ar-
ray axis).

scheme proposed to 3GPP [1] to the enhanced version
incorporating subspace trackingand predictive beam-
selection. The spatially stationaryMicrocell scenario
defined in [17] is used. Channel estimation based on
the mutually orthogonal common pilot channels is per-
formed. We simply average the pilot symbols over one
slot, since a Wiener smoothing filter spanning over mul-
tiple slots would contribute an additional processing de-
lay. It can be seen that the reduced dimensional pre-
diction scheme (14) exhibits slightly better performance
compared to the conventional prediction scheme, and
much less computational complexity, i.e. 2 instead of
4 predictors are required (see Fig. 3).

In realistic communication systems coded transmis-
sion is employed. Therefore, one important figure of
merit for link level simulations is the BLER. The applied
convolutional encoder (with raterc = 1/2) and the intra
and inter frame interleavers were implemented accord-
ing to [3]. The transmission time interval (TTI) is set to
20 ms (i.e. two frames per block). At the receiver a Max-
Log-MAP-Decoder is applied for decoding [5]. All other
parameters are left unchanged regarding to the uncoded
system described above. In Fig. 4 BLERs for a system
with one Tx antenna, the conventional and the proposed
enhanced predictive eigenbeamforming scheme are de-
picted. The subspace tracking scheme based on orthogo-
nal iteration from Sec. 3.1. is used. The predictive eigen-
beamforming scheme yields the lowest BLERs over the
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Figure 3: Microcell environment with fixedEb/N0 = 10 dB.
The eigenbeamformer uses eigenbeam tracking
based on orthogonal iteration and predictive beam-
switching. The loop delay is set to 2 (dash-dot lines)
and 3 (solid lines).

whole range of considered speeds. For a fixed speed
of the MS an significant signal-to-noise gain can be ob-
tained as it can be seen from Fig. 5.

5. Conclusions

We studied the 3GPP eigenbeamforming scheme with
realistic feedback delay, quantization of eigenbeams and
channel estimation in spatially stationary and quasi-
stationary environments. The conventional scheme ex-
hibits a strong degradation for relatively high mobile
station velocities. It was shown that due to the predic-
tive short-term processing based on the efficient spatio-
temporal prediction scheme, a velocity of70 km/h and
a fixed signal-to-noise ratio ofEb/N0 =4 dB, the BLER
is lowered from1.3 · 10−2(4.7 · 10−2) to 1.4 · 10−3(5.1 ·
10−3) for a loop delay of 2 (3) slots. It can be con-
cluded that for a given BER/BLER the operational range,
i.e. the maximally allowed speed of the mobile station,
can be significantly increased. Furthermore, we have
shown, by exploiting the quasi-stationarity of the spatial
covariance matrix, that the proposed eigenbeam tracking
scheme can lower the computational costs considerable.
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