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Abstract This paper deals with near far effects encountered in MMSE linear multiuser
detection and proposes a method to mitigate the transmit-power dependent user-
specific bit error rates by introducing an additional postprocessing by a combi-
nation of nonlinear parallel and successive interference cancellation. Through-
out the paper we consider a quasisynchronous (i.e. asynchronous with coarse
synchronization at the receiver) OFDM-CDMA uplink transmission as well as
perfectly known channel impulse responses.
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1. Introduction

In recent years CDMA has been chosen as multiple access technique in
various major modern communication systems [1, 2, 3, 4]. In this paper we
investigate a multi-carrier CDMA (MC-CDMA) system [5, 6] in an uplink
situation. As multi-carrier technique we use Orthogonal Frequency Devision
Multiplex (OFDM). By using OFDM each subcarrier is only affected by flat
fading and the equalization effort is reduced to one tap for each subcarrier.
Since we investigate an asynchronous uplink situation multiuser interference
(MUI) can not be effectively suppressed by using orthogonal signature wave-
forms for spreading. This is only suitable in synchronous environments since
asynchronous conditions would destroy the orthogonality of such spreading sig-
natures. As an alternative we can use pseudo noise (PN) signature waveforms
as spreading sequences and combat MUI by using multiuser detection (MUD).
In this paper we investigate the linear MMSE multiuser detector under the in-
fluence of users received with varying powerlevels. Since the MMSE detector



is only asymptotically near far resistant it is desirable to improve the conditions
of reception for users with lower reception power. We suggest to postprocess
the received signal by a combination of nonlinear parallel and successive inter-
ference cancellation (PIC and SIC).
In section 2 we describe the OFDM-CDMA system and the model used to rank
the users into different powerlevels, in section 3 we describe the linear MMSE
multiuser detection and its application in the transmission system and propos-
als to combine the linear MUD with a nonlinear interference cancellation (PIC
and SIC). Section 4 gives simulation results. Finally, section 5 contains some
conclusions.

2. System Description

2.1 Transmission System

In the transmitter of the OFDM-CDMA system the information bits � � �������
	
for each user (users count from �������� ) are encoded by a convolutional
code (CC) of rate ����������� . The resulting vector � ����� ���
	 is then spread by!#" �%$&� times repetition of each coded bit ' �����( ���
	�) �*��+,�.-���� and a

successive multiplication by a user-specific signature / ����� resulting in 0� ����� ���
	 .
As we consider an asynchronous uplink transmission the signatures / �����

are PN
sequences. The entire processing gain 1 "

is
!2" �3�4�5�7638 .

After interleaving over
! � chips in the frequency domain the OFDM transmitter

transforms 0� ����� ���
	 in the time domain. In this paper the number of subcarriers! � corresponds to the processing gain 1 "
. This implies that one information

bit � ����� ���
	
inhabits exactly one OFDM symbol. A cyclic prefix of duration 9;:

precedes each OFDM symbol.
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Figure 1. OFDM-CDMA transmitter

The resulting userspecific signals F ����� ���
	 are then transmitted over � indi-
vidual G -path mobile radio channels. Real and imaginary parts of the channel
coefficients H �����I ���
	�)�J �LKM�LG are Gaussian distributed and statistically inde-
pendent.
At the receiver the cyclic prefix is removed. The received signal is transformed
back into the frequency domain by the fast Fourier Transform (FFT). One FFT
window transforms all users since we assume a coarse synchronisation (i.e. a



maximum delay between different users smaller than 9 :�� ��� where
���

is the
delay spread of the channel. It can be shown that at this stage the convolution
with the channel impulse response corresponds to a scalar multiplication of the
channel coefficients in the frequency domain � ������ ���
	�)�J ��� � ! � with the

spread signal 0' � ���� ���
	
which imposes that each chip is only affected by flat fading.
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Figure 2. Single-user OFDM-CDMA receiver

The received vector at the output of the OFDM receiver at time instance
�

can be expressed by

� ���
	 ��� ���
	 � ���
	��! ���
	
(1)

where � ���
	 are the convolutionaly encoded bits ' � ���( ���
	
of all users and � ���
	

is the system matrix.
The system matrix � ���
	

is composed by � user specific matrices.

� ���
	 � � � �#" � ���
	%$&$&$ � �('�� ���
	 	
(2)

where each of these has the form

) � ��� ���
	 �
*++
,
- � ���" ���
	

. . . - �����. ���
	
/100
243 (3)

The Column vectors - �����( ���
	 � ��5 �����(76 8 ���
	�)�$&$&$ )95 � ���(76 :<;>= " ���
	 	@? contain the ele-
ments 5 �����(76 A ���
	 ��B � ���� (7= " � :C;&DEA � ������ (7= " � :C;&DEA ���
	�) J �GFIH !#"

Those are element-wise products of the signature sequences J � ��� and the
channel transfer function K ����� ���
	

.
The considerations that are necessary to compute the pseudo-inverse

)�L ���
	
are

described in [7].



2.2 Power distribution of users

In order to investigate near far effects in the transmission a model to distribute
the different users to different powerlevels is introduced. Hereby concentric
rings are assumed around the receiver. The radii are determined by a constant
power ratio � in dB between successive rings and a path loss factor � indicating
the exponent of the radius. The users are equaly distributed to these powerlevels
(constant pdf). We want to emphasize that this leads to a different

��� � ! 8 ratio
for each powerlevel but results in a constant average over all users. Figure 3 is
depicting the constellation of the powerlevels and the resulting user and power
distribution as well as the average power for the power scenario considered
throughout this paper, i.e a space loss factor of ��� $ and a power ratio of
�,� � $ dB. The users are distributed on 4 powerlevels.
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Figure 3. Power distribution for 4 powerlevels ( ����� and 	
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3. Detection Concepts

3.1 Linear Multiuser Detection

As already mentioned, in linear MUD schemes the pseudo-inverse � L ���
	
of the system matrix � ���
	

has to be computed. Thus a linear MUD can be
considered as an equalization with knowledge of the structure of the multiple
access signal.
In contrast to the zeroforcing decorrelator the MMSE solution of the above
problem additionally takes the noise power ���: into account thus reaching a



compromise between the decorrelation of the interfering users and the avoid-
ance of an amplification of the noise power. In general, MMSE MUD outper-
forms MUD by the decorrelator [7].
However, in contrast to the decorrelator the MMSE MUD reaches only asymp-
totically optimal near far resistance ([8],[9]), i.e. for � �:�� J

. This is demon-
strated in figure 4. Comparing the bit error rates of the various powerlevels after
correcting the $ dB differences in

��� � ! 8 (refer to section 2.2) the decorrelator
shows equal performance for all powerlevels whereas after MMSE MUD lower
powerlevels exhibit a weaker performance.
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Figure 4. Comparison of decorrelator (ZF) and MMSE MUD in a near far scenario

3.2 Combating near far effects

By the nature of the MMSE MUD output and the realizations from [7] we
propose a combination of parallel and successive interference cancellation (PIC
and SIC) that uses the MMSE output as the initializing signal in order to enhance
the signal-to-interference ratio at the input of the FEC decoder. Then, in a
multistage process, the highest power users are processed in a PIC loop. The
output of the PIC is then transfered to a SIC stage where the reconstructed
received signal parts of the users with highest powerlevel are subtracted from
the original received signal (before the MMSE MUD) thus reducing the signal-
to-interference-ratio for the lower power users. The multistage process then
steps to the next (lower) powerlevel. This process is depicted in figure 5.
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Figure 5. Multistage detector

In this way each of the two nonlinear MUD processes is operating in its
predestined environments. Whereas PIC, best operating on users with equal
power, is processing the users of one distinct powerlevel, SIC, suitable for con-
ditions with large power variations of the received users, cancels the interference
between successive powerlevels.

4. Performance Analysis

Simulation results for the proposed multistage MUD are shown in figure
6. The multistage MUD is compared to the MMSE multiuser detection. The
different powerlevels are taken into account as described in section 3.

The multistage MUD is mitigating the near far effects. All powerlevels
converge to the bit error performance of the highest powerlevel. Since before
detection the users of the lowest powerlevel are freed from all interferers of the
higher powerlevels they exhibit the highest performance gain compared to the
MMSE MUD. The gain is close to 1 dB. Consequently the users of the highest
powerlevel show only little gain by the multistage MUD since they only profit
from the PIC Loop within their own powerlevel.
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Figure 6. Comparison of MMSE and multistage MUD in a near far scenario

5. Conclusion

It is shown that the proposed multistage MUD is indeed leading towards
a convergence of the bit error performances of the different powerlevels and
thus the near far effects encountered in sole MMSE multiuser detection can be
mitigated.
Due to the nature of the system, i. e. the serial connection of parallel and suc-
cessive interference cancellation in the postprocessing after the MMSE filter,
the lowest powerlevel is the most improved with a gain of about 1 dB.

To improve computation effort a proposal would be to additionally inves-
tigate a multistage MUD that includes instead of an initial MMSE filter for
all users a MMSE filter that aims only at the users of the highest powerlevel.
This procedure will reduce computation effort since it involves lower dimension
matrix inversions than the multistage MUD process described above. Perfor-
mance improvement could be achieved by replacing the single user detectors in
the system by MMSE filters aiming at the users of the specific powerlevel thus
improving the SINR of the following PIC loop.
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