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Abstract| An aposteriori channel error correction
method based on subband synthesis is presented in this
paper. Using not downsampled subband signals, we es-
timate the positions and amplitudes of errors inserted
during transmission, thus allowing a correction of the
subband signals and a resynthesis of a (nearly) error
free signal. The method can be extended to multiple
dimensions. Examples of transmitted (compressed)
images are shown with and without this method. The
results are very promising.
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I. Introduction

I
N the area of image and video coding, subband
decomposition and its special case, the discrete

wavelet transform, are two popular techniques [1],
[3]. Most applications are based on the two-channel
scheme in which the original signal is split up into
two subbands, each with half the size of the original.
This process can be repeatedly applied to one or both
subbands resulting in a tree-structured splitting of a
certain number of levels. The subband coe�cients are
quantized, compressed with data compression tech-
niques, transmitted, and at the receiver the original
signal (actually, an estimate of it) is reconstructed
by �ltering and adding the subbands in reverse or-
der. If the quantization is not too coarse and if there
were no errors during transmission, the synthetized
signal is very similar to the original. However, this
is not always the case. In order to keep the number
of errors introduced by real channels low, channel or
error control coding is used, which consumes a cer-
tain amount of the available channel capacity. As a
consequence, the quantization has to be made coarser
in order to achieve a better compression of the sub-
band coe�cients. This, in turn, degrades the quality
of transmitted images.

In this paper, we present a method for correcting
residual errors after the channel decoding based on
the cross-redundancy hiding in the subband signals
and on information about the distribution of errors.
The method works so well, that on graceful channels,
channel coding can completely be dropped, freeing
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channel capacity for �ne quantized subband data.

In Section II, the basics of the method are discussed
on a simple example. The extension to two dimen-
sions can be found in Section III, where the trans-
mission chain used for compressed image transmis-
sion is described. Special attention is payed to er-
ror spreading due to decompression (run-length and
Hu�man decoding). Simulation results in Section IV
illustrate the potential of the method, and some yet
unanswered questions are listed in the Conclusion.

II. The principle

In this section, the principle of our aposteriori chan-
nel error correction method based on subband syn-
thesis for the one-dimensional case is described in de-
tail. We use a simple example to show the e�ects
we utilize for the correction. The �lters used in the
analysis/synthesis stages of the two-band decompo-
sition are (e.g. [1]) h0 = [1; 3; 3; 1], h1 = [�1;�3; 3; 1],
g0 = [�1; 3; 3;�1] and g1 = [�1; 3;�3; 1].

Consider the signal in Figure 1a. This signal may
have an arbitrary form, but for simplicity, we have
chosen a smooth signal with a mainly low pass char-
acteristic, which is typical for lines of grayscale im-
ages. A usual subband decomposition of this signal
(�ltering with both the low pass and high pass anal-
ysis �lters and downsampling by a factor of 2) yields
subband signals depicted with dotted lines in Fig-
ures 1b and c. Assume that during transmission of
the samples of these two subbands two errors occur:
One in the low pass subband and one in the high
pass subband. For simplicity, again, let us assume
that both errors have positive amplitudes, and that
they are not on close relative positions in the both
subbands. Hence, the received subband coe�cients
di�er from the original coe�cients, and they are rep-
resented with solid lines in Figures 1b and c.

It is obvious, that a subband synthesis based on the
received erroneous subbands cannot yield the origi-
nal signal. Looking at the resulting signal depicted
in Figure 1d (solid line), one can easily notice the dif-
ferences to the original (dotted line) and locate the
impulse responses of the synthesis �lters g0 and g1,
compare Figure 2.

A subsequent analysis (�ltering, but no downsam-
pling) of this signal yields subband signals like in Fig-
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Fig. 1. The principle. a.) The original signal to be decom-
posed. b.) The (erroneous) low pass subband. c.) The
(erroneous) high pass subband. d.) The synthetised sig-
nal. e.) and f.) The subbands after a new analysis (without
downsampling!).

h0 h1 g0 g1

h0
 *

 g
0

h0
 *

 g
1

h1
 *

 g
0

h1
 *

 g
1

Fig. 2. The analysis and synthesis �lters used in the example
(h0, h1, g0 and g1) and their pair-wise convolutions.

ures 1e and f (solid lines). Please note that these sig-
nals are depicted in their original clock-rate versions
(i.e. not downsampled) - this plays a crucial role in
the following considerations.

Taking a closer look at the subband signals in Fig-
ures 1e and f, one can �nd the superimposed impulse
responses of h0 � g0, h0 � g1, h1 � g0, and h1 � g1,
compare Figure 2. On the position of the low pass
band error, there is a superimposed impulse response
h0 � g0 in the low pass subband, and a superimposed
impulse response h1 � g0 in the high pass subband.
On the position of the high pass band error, there is
a superimposed impulse response h1 � g1 in the high
pass subband, and a superimposed impulse response
h0�g1 in the low pass subband. Please note, that this
information gets lost by downsampling, and then the
(downsampled) subband signals exactly match those
in Figures 1b and c (circles).

Based on this information, a fairly accurate estima-
tion of the positions of errors and their amplitudes
is possible, which allows a simple and powerful, even

though not perfect, error correction. To accomplish
it, following problems have to be solved:

� how to �nd the position of errors; if the estimate
of the real, not downsampled versions of the subband
signals is needed for that search, how to obtain them,
and
� how to estimate the amplitude of the errors.

A. How to �nd the positions?

The method of �nding the positions of errors it-
self is not crucial as long as it yields reliable re-
sults. Reliable means here, that no additional er-
rors are (wrongly) detected. For some awkward sig-
nal forms it is almost impossible to tell whether the
error-candidate is perhaps only the signal itself or the
signal with superimposed error. Therefore, the deci-
sion algorithm should be rather defensive and in case
of doubt leave the error position unmarked, which is
a good choice, as we will see later.

Upon reception of the subband samples x0 and x1 (see
Figure 3, a classical interpolation (e.g. spline interp.)
is performed in order to get a coarse approximation
of the subband signals in the higher clock-rate (box
\interp" 2" in Figure 3). At the same time, a subband

synthesis (resulting in x̂0) followed by a new analysis
(x0

0
and x0

1
) is performed.

The decision (boxes \D0" and \D1") is basically per-
formed as a thresholdig in two signals simultaneously.
For a certain position in the low pass band to be
marked as an error, both correlation signals on the
input of \D0" have to be above certain thresholds.
The outputs of both boxes \D0" and \D1" are logi-
cal values in the downsampled clock-rate.

In Figure 3, the gray background marks blocks which
operate on the higher clock-rate (i.e. the signals are
not downsampled).

B. How to estimate the amplitudes?

The amplitude of high pass band errors can directly
be computed from x0

1
, and they simply have to be

subtracted from the received value in order to get
correct samples.

One easy way to estimate the original amplitude of an
erroneous low pass subband sample is to interpolate it
from neighbouring samples. In Figure 3, this is done
by the block \gap interp". On erroneous positions
this value is inserted in place of the received sample.

Finally, the second subband synthesis results in signal
x̂, which, ideally, contains no more errors.

III. Compressed Image Transmission

The technique presented in the previous section can
be extended to multiple dimensions. It is even more
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Fig. 3. The 1D subband analysis and error correcting synthesis.
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Fig. 4. Compressed transmission of images.

advantageous to do so, because errors, that have
been left undetected or uncorrected in one direction
can be handled successfully in the next one. Sub-
band/wavelet image coding with separable �lters is
the ideal application in this sense.

Usually, the transmission of compressed images is
performed in the following steps. First, an appro-
priate transform coding is performed (in Figure 4,
this is represented by the block \Trsf coding"). In
order to be able to achieve signi�cant compression
ratios, quantization follows (block \Q"). The quan-
tized coe�cients of the transform coding are usually
scanned (\SC") in a way which allows the run-length
and variable-length encoding (\R/VLE") to perform
best. In order to mitigate the inuences of the chan-
nel, channel coding is used (\ChC"). After the chan-
nel decoding (\ChD"), the run-length and variable-
length decoding (\R/VLD") is followed by reordering
(\RO") the obtained samples into a layout which is
needed for transform decoding.

In case of subband/wavelet decomposition as the
transform coding (which we use in this paper), the
original image is decomposed in the well-known man-
ner [1] into four subbands. First, the rows of the im-
age are decomposed with the analysis �lter bank into
two subbands, after which a further decomposition of
the columns of these two subbands follows. Please
note, that the last decomposition takes place in ver-
tical direction. An example of such a decomposition
is shown in Figure 5.

The scanning of the samples (Figure 4, block \SC") is
usually done subband-wise. Despite the spatial orien-
tation property of the wavelet decomposition, we scan
the samples in horizontal direction (i.e. row-wise) in
all subbands. This decision was motivated by con-
siderations described later on in this section. In the
simulations in this paper, no channel coding was used.

Typically, high pass subbands contain a lot of samples
whose values are below the quantization level. There-
fore, the use of run-length coding [2] is justi�ed for
precompressing these regions of the subbands. Run-
length coding maps byte-sequences of various lengths
onto byte-blocks of �xed lengths. To achieve further
compression, entropy coding (variable-length coding
techniques such as arithmetic coding or Hu�man cod-
ing) is used. Hu�man coding maps a byte onto a
(short) bit-stream of variable length. It is self-evident
that such a compressed bit-stream is very vulnerable
against channel noise. Every bit-error desynchronizes
the Hu�man decoder, so a self-synchronizing decoder
has to be implemented. Such a decoder would deliver
byte-streams that sporadically contain bursts of er-
roneous bytes. The run-length decoder should cope
with that byte-stream, i.e. be robust against error
bursts and be able to deliver a byte-stream of the
same length as it had on the input of the run-length
coder. The easiest way to implement such run-length
and Hu�man coder/decoder pairs is to insert resyn-
chronisation and position marks in the byte- and bit-
streams. An example of the distribution and patterns
(expressed via the shade of grey) of such an error
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Fig. 5. Original image and its subbands after decomposition.

propagation in the reordered (subband-wise, row by
row) byte-plane is depicted in Figure 6. This error
distribution is highly signal-dependent.

The four subbands in Figure 5 bit-wise xor-ed with
the corresponding error values in Figure 6 build the
input data set of the transform decoding.

At synthesis (transform decoding), we begin with
columns of subbands lying one upon the other. Hori-
zontal error bursts represent single errors for vertical
processing, so our method described in Section II can
e�ectively correct them. This interleaving-e�ect is
why we scan all the subbands solely horizontally. The
reason for using a defensive error searching strategy
in Section II is, that errors not having been marked
in the vertical synthesis still can be detected and cor-
rected in the subsequent horizontal processing.

A. Advantages of the method

This error correcting method allows us to drop chan-
nel coding (or to keep only a necessary minimum)
and use the bandwidth for transmitting more source
coded data. In general, this increases the transmitted

Fig. 6. Error distribution and patterns in the reordered sub-
band byte-plane (example).

image quality. This method is not an image restora-
tion or post-processing method, and bluring - inher-
ent to the most of these methods - is not present.
The method is a receiver-site-only method, which re-
locates the computation onto the receiver solely. This
can be advantageous in applications, that have to be
enhanced without altering the sender.

B. Drawbacks of the method

The main disadvantage of the method is, that for
some speci�c signal forms, errors will be detected
even though there are none. The estimation of the
not downsampled versions of the received subband
signals is far from perfect (especially on edges in the
image) and the amplitude of errors can not be esti-
mated accurately enough.

IV. Simulation results

In Figures 7 and 8, simulation results for two chan-
nel bit-error probabilities are given: Pe = 0:001
and Pe = 0:01. These probabilities represent mean
bit-error probabilities on the used binary symmet-
ric channel (BSC). Due to run-length and Hamming-
decoding, the number of errors just before synthesis
is much higher than right after the channel; it de-
pends on the signal, and has no force of expression
therefore.

It is obvious, that the method presented here yields
very nice results in terms of surpressing burst errors
stemming from run-length and Hamming-decoding of
erroneous bit-streams. Figure 8 is a good demonstra-
tion of its potentials. However, in situations like error
bursts in both vertical and horizontal direction, it is
ine�cient. Such artefacts can be found in both Fig-
ures 7 and 8.
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Fig. 7. Image transmission example. Mean bit-error probabil-
ity on the channel: Pe = 0:001. First image: without our
correction method. Second image: using our method.

Conclusion

The technique presented here is a new technique
which allows the correction of channel errors apos-
teriorily, i.e. after reception. There are still many
questions to be answered, among others:

� Does the method perform better with longer (bet-
ter) �lters (i.e. less aliasing between the subbands)?
If so, which �lters are the most appropriate?
� Is there an optimum in the tradeo� between chan-
nel coding and quantization (that inuences the com-
pressability of the image)? Can channel coding in real
transmission situations be completely left out?
� Does it generally make sense to perform the error
correction presented here in more stages consecutively
(i.e. iteratively)? If so, how the thresholds have to be
adjusted?

The method for correcting channel errors based solely
on the source decoder, which we presented in this

Fig. 8. Image transmission example. Mean bit-error probabil-
ity on the channel: Pe = 0:01. First image: without our
correction method. Second image: using our method.

paper, is a very attractive one, because it allows usage
of channel codes of higher rates (\weaker" codes), and
therefore the transmission of more image data in the
same bandwidth.
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