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Iterative Restoration Algorithm for
Real-Time Processing of Broadband
Synthetic Aperture Sonar Data

which uses a digital matched filter for pulse compression followed by aperture synthesis, also

referred to as azimuthal matched filtering, to improve resolution. Thus, the processing scheme is
equivalent to a two-dimensional matched filter operation, in which the point spread function (PSF) for
the particular SAS-geometry considered is correlated with the observation. It can be shown that this
processing scheme is suboptimal, because it causes a blurring of the processed image. Therefore, the
purpose of this paper is to develop a computationally efficient iterative algorithm for reconstruction,
which compares effectively to the matched filter in the processing time, but shows significant
improvement in image detail. The proposed iterative restoration algorithm is derived by modifying the
optimal gradient method through an adaptive relaxation technique. The adaptivity is introduced to
incorporate properties of the true restoration error. This makes the successive approximations approach
the exact solution much faster, enabling a visually good convergence within a few iterates. Asymptotic
convergence of the proposed iterative algorithm is established. For the experimental results which are
shown, the new algorithm performs better on accuracy and compares well on computation time.
Application to underwater object imaging using simulated data shows clear improvements compared to
a matched filter processing technique.
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B roadband synthetic aperture sonar (SAS) is a high resolution underwater imaging technique,

Introduction

There are a number of applications where underwater
imaging systems are required to generate images with high
enough fidelity necessary for accurate image interpretation.
But, the physical nature of the ocean environment places
various limitations upon the ability to image underwater
objects using synthetic aperture techniques. Factors such as
low sound speed, attenuation, platform stability, and
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reverberation (1,2) place constraints on imaging parameters
such as resolution and area coverage rate. Undersampling
the synthetic aperture is usually performed so as to increase
the area coverage rate (1). However, this has a main
consequence. Ambiguous images (3), appear in addition to
true target images. The imaging method of broadband SAS
is a sonar technique, which, while operating under such
stringent conditions, enables a maximum of useful informa-
tion about the sonar target to be collected for processing. A
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wider bandwidth results in increased resolution in range
direction. The azimuthal resolution is still determined by the
dimension of the physical antenna (1), but image aliases
which otherwise would characterize any other under-
sampled system are smeared into the image background
(1,4). Therefore, it is evident that broadband SAS is capable
of producing high resolution images, if a sensible process-
ing scheme is applied to the raw data.

SAS-imaging is a classical example of a case where
information about an object is acquired by monitoring
backscattered acoustic signals. The treatment of the prob-
lem of retrieving an object function from its image by
applying a computer algorithm to measured data, requires
adequate description of the physical processes leading to
image formation. In many cases of acoustical reflectivity
imaging (5,6), such a mathematical model is given by the
Fredholm integral equation of the first kind (7):

g(x, y) = g h(x, y; Xo, Y0)S(Xg, Yo)dxody,  [1]

where D is a region in IR2. In Eqn [1], h is a general kernel
representing a point spread function. If s is the object
function, then g is called the observation or the image. The
underwater imaging technique of broadband SAS has access
to the integral equation given above (8,9). Therefore, among
the important points concerning broadband SAS, we note
that the processing of raw data need not be restricted to the
conventional methods (3,10,11) only. Since our purpose lies
in imaging, all details regarding the sonar system used are
not discussed. We refer the interested reader to work by de
Heering et al. (12). For consistency, the PSF determined
from parameters of the same sonar system has been used in
all simulation experiments performed in this work. This also
allows comparisons with previous work (12).

In this paper, we propose a relaxed gradient algorithm for
reconstructing an object from broadband SAS-data. The
derivation is based on a steepest descent approach to
restoration. Properties of the true restoration error are
directly incorporated into the reconstruction process
through adaptive relaxation. Thus, the error is purposefully
suppressed, leading to improved rate of convergence at an
early phase of the iteration process. The proposed algo-
rithm, whose iterative nature offer several advantages over
direct solution methods (13), is analysed and sufficient
conditions for convergence are established. The form of the
proposed algorithm is suitable for extending it to sharpen
any matched filter-processed image.

The discussion of the mathematical model for the
underlying physical problem is presented next. Later, we
derive and analyse the relaxed gradient algorithm. Finally
experimental results using simulated data are shown, along
with limitations of the proposed algorithm.,

Processing of Broadband SAS-data |

Conventional processing methods apply a pulse compres-
sion technique (which is essentially a digital matched filter)
to the SAS-data, followed by aperture synthesis (3), in order
to improve resolutions in range and azimuthal directions
respectively. But, to exploit the high resolution capabilities
of SAS-systems fully, focused coherent processing is used
for aperture synthesis (4,11). In this case, the two-step
process is equivalent to a two-dimensional matched filtering
between a received signal g and its replica, which is
identified as the PSF h of the imaging system (9). Thus, we
obtain the following expression

Smi(x, ¥) = || (x + X0, ¥ + Yo)R(x0, Yo)dxody,
D

=h(x,y) @ ® g(x, y) [2]

where Smf is the focused image, and ® ® denotes two-
dimensional correlation. The matched filter focusing tech-
nique in Eqn [2] can be shown to be equivalent to the
following expression

Smf (X, ¥) = 5(x, ¥) ** Ry (x, y) {3]

where Ry, is the autocorrelation of the PSF, and ** stands
for two-dimensional convolution. From Eqn [3], we con-
clude that matched filter processing is suboptimal, because
the estimate is equal to the original object reblurred with the
autocorrelation of the PSF, and in practice, it is unlikely that
the autocorrelation, R,;, will be an impulse. It is clear from
Eqn [3], that the image details lost during conventional
processing can be regained using an image deblurring
algorithm for postprocessing.

Alternatively, a deconvolution method can be applied
directly to focus the SAS-data. We note that if the imaging
process is restricted to those objects within range and cross-
range limits such that the PSF remains range-invariant, and
is therefore independent of absolute position, the data
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acquisition model given by Eqn [1] reduces to the simpler
convolutional integral

glx, y) = Q h(x — xg, y — ¥0)s(Xg, Yo)dxodyo

= s(x, y) ** h(x, y) (4]

Thus, in the event that the inverse of the operator h exists,
the object can be reconstructed by the deconvolution
operation as

s =g(**) h [5]

However, direct deconvolution, which is equivalent to
applying an inverse filter to the problem (14), will not
deliver satisfactory results, since there is no guarantee that
the integral kemmel A is not ill-conditioned. Iterative
deconvolution has been applied by de Heering et al. (12) to
focus SAS-data. In a real system the iterative algorithm is
expected to execute within a unit of time, which a
conventional processing scheme would require to produce
the image. Therefore, we propose the development of a fast
reconstruction method utilizing iterative methods, that
performs at near real-time, as compared to the matched
filter, or its equivalence.

Optimal Iterative Algorithm for Reconstruction

The field of image restoration has received wide attention
from the engineering and scientific community. The com-
prehensive paper by Biemond et al. (13) cites over 80
publications on the subject. Many algorithms have been
published, ranging from the empirical formula of van Cittert
(15) over ones with optimized rates of convergence (16) to
computationally intensive methods incorporating regu-
larization (17), adaptivity based on the human visual system
(18), higher order convergence (19), etc. Much of the
published work is directed at problems in the field of optical
imaging, where deblurring is performed as a postprocessing
operation and time may not be a deciding factor. In
applications such as focussed processing of raw SAS-data,
or computerized tomographic imaging with ultrasound
sources, it is necessary to design reconstruction algorithms
which are computationally efficient and show sufficient
accuracy within a few iterations, thus enabling fast
processing of the information delivered by the sensor.
Furthermore, deblurring is secondary, the primary aim is in
reconstruction. These aspects motivate us to search for a

restoration method which is specifically optimal to the
requirements dictated by the application. The algorithm to
be presented is therefore derived from basic methods of
optimization theory (20-22) and is made specific to solving
the problem of SAS-data processing.

Problem Statement and Solution Method

The integral-equation in Eqn [1] is a two-dimensional
inverse problem (23). For the discussion to follow, it is
convenient to restate it using matrix-vector notation

g=Hs+n [6]

s, g, n are lexicographically ordered vectors of size N? X
1(24,25) and H is the distortion operator of size N2 X N2,
whose elements are samples of the PSF. The additive term,
n, represents the noise associated with the measurement
process. In the general case, when discrete values are not
considered, Eqn [6] still holds if it is written in operator
notation as in Schafer et al. (26). In previous parts of this
paper, the physics of SAS-image formation was modelled
by a Fredholm integral equation of the first kind. The ill-
posed nature of the solution (27) translates into an ill-
conditioned matrix H. This problem, together with the
difficulties encountered when H is singular (17), can be
tackled implicitly, if the solution is sought utilizing an
iterative procedure. Iterative gradient methods are exten-
sively used to solve problems involving minimization of
functionals. The behaviour of a gradient method for a
general function is similar to its behaviour for a quadratic
function. Therefore, it is instructive to consider first the case
in which the function to be minimized is quadratic and
relate the method to the underlying problem. It has been
shown in optimization theory (20,22), that gradient methods
which minimize the quadratic function

1
ﬂu):;uTAu —-viu + ¢, A
solve a linear system similar to Eqn [6], that is

v = Au [8]

A sufficient condition for f to have a minimum is that its
Hessian A be positive definite. But here, we consider a more
general case where the only condition on A is that it should
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be a symmetric matrix. The optimal gradient algorithm (22)
is an iterative technique which successively approximates
the solution to Eqn [8] by performing the following
computations:

u =v;

U, = U+ ary [9a]

In Egn [9a], if the correction vector, ry, is chosen to be the
negative gradient of the quadratic function as

re =-Vf (u) [9b]

which happens to be the direction of steepest descent of f,
then the algorithm is called the method of steepest descent
(28), and the optimal step size a is determined such that

a = a; minimizes fi{(a) = f (ug + a;ry) {9¢cl}

Keeping in mind that the ultimate aim in Eqn [6] is to obtain
a restored solution § = s, rather than an explicit inversion,
the algorithm can be applied to the image restoration
problem, if a quadratic function describing some quantity
specific to the problem can be found. To this purpose, the
residual at k-th iteration is determined from Eqn [6] as

e, = g —Hs, [10]

Its squared norm is quadratic in s, as can be seen from the
following expression

|lec |12 = (g —~Hsp)” (g —Hsy)
= 5.7 (H H)s, -2(H"g)" s, + ¢,

Thus, a quadratic function that describes the imaging
problem can be written as

1
se) = — |} e |}?
b0 =l e
1
= E siT (H™H)s, —(HT g)7 s + ¢ 11}

Based on this, quantities corresponding to those in Eqns
[9a—c] can be stated as follows:

s;i=H' g
Sk+1 = S+ BePs [12a]
Pi=-Vd(s) = H ¢, {12b]
e, H 2
) (e, Hpy) I e I [12¢]

" (pp HTHpy || Hp,|]?

Comparing the function in Eqn [11] to that in Eqn [7], it can
be deduced, that the algorithm outlined in Eqns [12a—c]
solves the system of equations

H ' Hs=H"g (13]

Postponing the discussion of any necessary conditions on
the parameter of (3, to a later section, it can be concluded
from this result that the algorithm in Egns {12a-c] con-
verges to the minimum norm least squares solution plus
so, where sg is any vector in the null space of H” H
(29-31). Thus, it can be interpreted as an iterative least
squares method with a locally optimized rate of con-
vergence. If instead, the step size is held constant at a
value that guarantees convergence of the sequence {s;},
then the algorithm reduces to the reblurred van Cittert
method (32). The solutions of Eqn [13] contain those of
Eqn [8], which may not have solutions depending on the
properties of A.

Modification to the Basic Iterative Algorithm

The main issue of improved rate of convergence, while
keeping computation to a minimum calls for a re-
examination of the iteration procedure as a whole. It is
obvious that the correction vector leads us into the convex
set of points containing the solution, but the step size does
not optimally penalize the true error. This can easily be
inferred from Eqn [12c], whose derivation was based on a
quadratic function that minimizes the squared norm of the
residual, which is recognized to be the observable error in
the image space. The true restoration error, however, is
defined in the object space as

Ec=5-5; {14]

From Eqgns [10], [14] and Parseval’s identity we have
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[ ell?=|lHE |
A I/2Ay '/zAx H 2
=Ax y—’,IAy—JAxl (f;r:f;;)'
|E(f 1) |2 4 df, [15]

where A, A, are~spatia1 sampling intervals, f,, f, are spatial
frequencies, and £(f,, f,) is the Fourier transform of €. Since
the PSI of a real system is dissipative, that is, it can pass or
attenuate energy at given frequencies, the norm of the
residual cannot exceed that of the true restoration error, i.e.,
|lex]]? < ||&k||?. This can have adverse effects on the rate of
convergence, Specifically, more iterations will be required
to achieve a prescribed degree of sharpness in the
reconstructed image. A constant step size can be used at the
cost of higher iterations or increased computation, if a
higher-order algorithm (19) is implemented.

A numerically effective method for improving perform-
ance of the basic algorithm could be offered by a
generalized relaxation technique. This hypothesis is made
as a consequence of investigations, which prove that in
using a steepest descent method, it is necessary to
incorporate an under-relaxation parameter into the iteration
process (22). Comparable techniques have been incorpo-
rated into the Jacobi iteration procedure (34), a method
whose structure is quite similar to the algorithm in Egns
[12a—c]. Young (33) showed that better results can be
gained by using variable relaxation, and in one case of
technical interest, fixed and adaptive relaxation methods
have been demonstrated (30). In this work, we propose the
use of an adaptive relaxation technique following methods
outlined by Hestenes (22) and Jennings & Mckeown (34),
while simultaneously reducing the number of matrix
computations per iteration. The problem encountered in
many cases where dynamic or non-stationary relaxation
(35) is to be performed, is that of how to determine the best
weighting factor in each iteration. Chebyshev polynomials
have been used by Richardson (33), but this increases
computation. The method followed here begins with a
modification of Eqn [12¢] of the basic algorithm. In
determining the step size, we replace the quadratic function
through the squared norm of the true error to arrive at the
following equations.

1
D(sy) = > [l [16]

a = o, minimizes ®, (o) = P(sg + a;pr)  [17]

This modification leads to a relaxed gradient algorithm of
the form

s;=H' g
Sksn=Sk+ a Py [18a]
Px= —A@(Sk) = HTek [18b]
2
R e
(o PO Ilexll [18¢]

oy = =
@ P ||[H ]2

We point out that the iterative process remains a steepest
descent algorithm, because the correction vector has not
been altered. Also, it’s worth noting from Eqn [15] that
[|ex]]> = 0 does not imply ||£x||? = 0, when H vanishes in
some frequency bands. This confirms the hypothesis that
the proposed relaxation is a better indicator for con-
vergence. The result in Eqn [18c] is in principle a
generalization of the error energy minimization (16) to
multidimensional problems.

Convergence

In the literature, convergence of iterative algorithms like
that in Eqns [18a—c] but with a set to a constant, is
established using the properties of contractive and non-
expansive mappings (26). Based on these theorems, it has
been deduced, that the sufficient condition for convergence
to a unique fixed point is for the operator I —~a«HTH to be
contractive. But, for some distortions, I —aHTH is non-
expansive, because the matrix HTH is allowed to be non-
negative. Under these more general conditions, convergence
is to the solution stated previously. In both cases the
parameter o must be constrained as follows (18):

O<a<— 19
y; [19]

where M is the largest eigenvalue of the symmetric non-
negative matrix HTH. The scanned literature on restoration
methods reveals no explicit derivation of the above relations
for cases with variable step size. Therefore, in order to
establish convergence for the relaxed gradient algorithm,
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we must generalize the steps which lead to the operator I
-aHTH to iteration matrices (34). By examining the
iteration Eqn [18a], we recognize that, applying contractive
and non-expansive theorems is equivalent to the following
sufficient condition. For absolute convergence, the upper
bound of the sequence {S;} generated from iterates in Eqn
[18a), must be less than unity. For the type of algorithm
represented by Eqns [18a—c], the upper bound can be
written as (22)

Lo=lim sup ||T-aHH|| [20]

provided the sequence {a,} is bounded. We conclude that
for convergence, the iteration matrix I —a,H"H must be at
least non-expansive for some finite k = n. It has been proved
(22) that if o, is given by a formula such as Eqn [18¢], in
which e, is any non-null vector, then for n < k < =, o
satisfies the constraints in Eqn [19], which is the necessary
condition. This completes convergence proof for the relaxed
algorithm.

Implemented Form of the Proposed Algorithm

The asymptotic rate of convergence for the relaxed
gradient algorithm is easily deduced by considering the
error propagation through one iteration step to the next.
Since the iteration matrix is the operator I —o, H'H, we
have &,,; = (I —o,H"H),. This is a linear rate of
convergence, similar to that for the method of steepest
descent. It leads to the belief that the method converges
slowly and could probably be inferior. However, the
estimates approach the exact solution much faster, mainly
due to the fact that the adaptive relaxation makes implicit
use of the information about the true error while the
iterative process evolves. Because the error is being
suppressed more purposefully, a significant improvement
in efficiency is obtained. Visual convergence is likely to
be discernible within a few iterations. Experiments show
an even better performance during the initial phase of the
iterative process, if « is replaced as given in Eqn [18c],
through its square root. Noting that under these changed
circumstances the conditions for convergence discussed
earlier cannot be guaranteed, the relaxed algorithm must
incorporate additional information to overcome any
unwanted side-effects. Prior knowledge of the form of the
solution, is widely used (26) in the form of constraints, to
permit the convergence of an iterative formula that might
not otherwise converge. Specifically, in the sonar case, it
is known on physical grounds, that the object has a

bounded support. This is a hard constraint and can be
expressed using an operator C. Therefore, the iterations
can be carried out with s; replaced by Cs;. Thus the
implemented relaxed gradient algorithm can be stated as
follows:

s;=H" g [21a]
Ska1 =Sk + AP [21b]
§,=Cs, [21c]
8 = g - HS, [21c]
B =HTE, [21d]
[[&]|
e #

If the algorithm is applied to the SAS-problem, then the
matrix H is Toeplitz. The algorithm Eqns {21a—e] can be
written using signal notation:

s = h ® ® 8
Ska1=CSk + 0 h @ ® (g —h**cs,)

- &

= ———— 22
* e (2]

Note that conjugate matrix transpose results in correlation
between the respective two-dimensional functions. The
constraint operator is multiplicative, because it is enforced
in spatial domain. The signal norm given in the last part of
Eqn [22] is defined for the discrete signals used in the
experiments as

\/1 N
el =y 2, 2, e G )) [23]

From Eqn [22], it can be seen that the relaxed gradient
algorithm executes two computations per iteration, as
compared to three for the steepest descent algorithm.
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Two points can be noted as concerns the algorithm in
Eqns [21a-e¢]. If focusing of the sonar data is to be
performed using interative techniques, then its equivalent
in Eqn [22] can be directly applied to the measured data.
If a matched filter estimate of the object is available as
Smr» and postprocessing is required to sharpen the image,
then the algorithm can be applied to Eqn [3] in a form
similar to the reblurred van Cittert’s method:

Setting a = 1, that is, taking the non-optimized version
of Eqn [21], we get

Ska1 = CS + (Ryg —Ryy ¥*csy)

=CSp + (Smf—th **C.S'k) [24]

In Eqn [24], the correlations are constant quantities which
can be computed and stored, before the iterations com-
mence. The only computation performed per iteration is a
convolution. Thus, it can be seen from the last discussions
in this section that the relaxed gradient algorithm is
suitable for solving the problem of SAS-data processing.

Simulation Results and Applicability

In this section, we present results of numerical experi-
ments performed using simulated test objects, supposed to
present significant difficulties in underwater imaging. The
geometry of the PSF, which is sketched out in Figure 1(a),
corresponds to definitions of the SAS-design example
from (9). The dimensions of 6-4m X 64m are due to a real
situation that would occur at sea. The PSF and the test
objects were used to test the performance of a reconstruc-
tion algorithm (12), and they have been used here for
consistency. All figures presented, are defined as 64 X 64
matrices. The distances in range and azimuthal directions
(sonar track) respectively, as given on the figures, indicate
the difference in sampling. The algorithms have been
implemented using two-dimensional FFT. To enable cali-
brated comparisons, all of the two-dimensional functions
must be normalized. Although it was assumed that target
insonification is done using broadband pulses implying
that pulse compression is unnecessary, we still have to
perform a two-dimensional matched filter on the received
signals, because the imaging geometry leads to a PSF with
a curvature as shown. The experimental work has been
carried out using simulated test objects because we wanted
reproducible characteristics, which can be used as
markers.

Examples

In this numerical example, we want to evaluate the
performance of the relaxed gradient algorithm, by compar-
ing results to those obtained using the steepest descent, and
the Bremen2 Algorithm (12). The latter is a SAS-focusing
technique, which implements iterative deconvolution, and
uses a correlation coefficient to accelerate convergence. The
criterion used here is visually good convergence within a
few number of iterations. In Figure 1(c), the observation g
represents the raw data, collected by the SAS-system, if it
were to image the crown or crater shown in Figure 1(b). For
this simulation, it was calculated by convolving the PSF h
with the crown s. Figures 2(a-c) show results obtained after
10 iterations using the three algorithms. The estimate after
10 iterates of the steepest descent method Figure 2(a) is
judged poor. It does not show sufficient convergence.
Bremen?2 performs relatively well, but, there is a clear
indication of energy leakage to the left and to the right in the
reconstruction in Figure 2(b). In Figure 2(c), the relaxed
gradient algorithm displays good restoration. Apart from a
small incursion, there are no erroneous negative values, as is
produced by the other two methods. This can be clearly seen
from the slice taken across the range direction, approx-
imately at the place with maximum loss Figure 2(d). The
estimates after 50 iterations are similar for the first two
algorithms. The results for the relaxed gradient algorithm
Figure 3(c) is comparable to the crown itself. This can also
be seen in Figure 3(d), where the amplitude is over 80% of
the original. These results confirm the ideas proposed
earlier, and considered in the development of the relaxed
gradient algorithm.

Target 19, which is shown in Figure 4(a), is an object
designed to present a more realistic situation of SAS-
imaging, e.g., an iceberg. Its size and form do not allow
simple definition of a hard constraint on the 64 X 64 raster.
Therefore, it presents significant reconstruction difficulties.
The results obtained for 10, 24, and 100 iterations are shown
in Figures 4(c—e), along with that for 100 iterations of
Bremen?2 Figure 4(f), and the matched filter estimate Figure
4(b). It is worth noting, that the new algorithm shows super-
convergence at the 100-th iterate, although at 10 iterations,
unwanted peaks appear due to a non-symmetrical
constraint.

Significance for SAS-data processing and related
Applications

Qualitative improvement in resolution is evident in the
reconstructions performed with the relaxed gradient algo-
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Figure 1. Test data used in the experiments. (a) The point spread function; (b) Crown; (c) Observation.
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Figure 2. Restoration after 10 iterations. (a) Steepest descent algorithm; (b) Bremen2 algorithm; (c) Relaxed gradient algorithm; (d) Slice
parallel to sonar track. —, original; — — —, steepest descent; ------ , Bremen2; —-—-—. , relaxed gradient.
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Figure 3. Restoration after 50 iterations. (a) Steepest descent algorithm; (b) Bremen2 algorithm; (c) Relaxed gradient algorithm; (d) Slice
parallel to sonar track. —, original; — — —, steepest descent; ------ , Bremen2; —.—.—. , relaxed gradient.
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Figure 4. Application of relaxed gradient algorithm to target 19. (a) Target 19; (b) Matched filter reconstruction; (c) Reconstruction after
10 iterations; (d) Reconstruction after 24 iterations; (e) Reconstruction after 100 iterations; (f) Bremen2 algorithm after 100 iterations.
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rithm. A main problem is constraint tightness, which leads
to some errors at low iterations, but the sharp features in
target 19 are visible. This confirms that more image detail
is displayed than those achievable by matched filter
processing. One important point to note is that an iterative
reconstruction method as the one presented, demands that
the point spread function of the imaging system be known.
This is a problem, which in applications like optical image
restoration, extends deblurring to include system identi-
fication (13) as well. In the sonar case, the PSF is either
only approximately known, or has to be recovered from
field data. This can be accomplished by insonifying a
reflecting object, whose range and azimuthal dimension is
small with respect to the range and azimuthal resolution of
the sonar. In this case, the object in question is effectively
a point target. If, on the other hand, an image produced by
a conventional focusing technique requires postprocessing
to bring out more image detail, then the same conven-
tional processing scheme can be used to extract the
autocorrelation of the point spread function necessary for
deblurring according to the algorithm in Eqn [24].

Processing of data from range dependent point spread
functions has been discussed by de Heering (9). In this
paper, we considered the sonar to be operating in the
Fresnel zone (1), where the asumption of range-invariance
is well approximated.

In its operation, undersampled broadband SAS spreads
azimuthal aliases into the image background. This is a
form of self-clutter and may increase the background
noise. If the phenomena can be modelled as additive noise
as in Eqn [6], then the convergence conditions cannot be
fulfilled, unless suitable regularizing operators are
included. This could offset the objective followed here to
achieve absolute low-cost computation. Difficulties are
also encountered when the position of the constraint
operator has to be determined. As has been observed in
the simulation with target 19 test function, the algorithm is
sensitive to position of the constraint with respect to the
true position of the object to be reconstructed. If, in this
case, a usable constraint function cannot be obtained
through clipping the first estimate, which is essentially the
matched filter processed image, then it is advisable to use
the unconstrained iteration, but the relaxation must be
performed using the full value of a given in Eqn [18c].

Conclusions

This paper has discussed the development of an iterative
restoration algorithm and its application to the problem of
SAS-data processing has been demonstrated by examples.

The development was based on an optimization theory
approach to minimization of quadratic functions. Restric-
tions due to requirements of the application were used as
guidelines to arrive at a simple, but robust algorithm,
which show good convergence after a minimal number of
iterations. The iterative structure of the algorithm offer an
advantage over direct inversion, because deterministic
knowledge about the original object can be incorporated
into the reconstruction process, and thus improve con-
vergence. It is concluded from this work, image restora-
tion has reached maturity, but specific problems demand
specific solutions, which is true for SAS-data processing.
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