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Time Truncation of Channel Impulse Responses by Linear
Filtering: A Method to Reduce the Complexity of Viterbi
Equalization
Karl-Dirk Kammeyer
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Lineare Filter zur zeitlichen Konzentration
von Kanalimpulsantworten: Ein Verfahren zur
Aufwandsreduktion bei Viterbi-Entzerrern

Der Realisierungsaufwand fiir ecinen optimalen Daten-
empfanger mit Viterbi-Detektion steigt exponentiell mit der
Linge der Kanalimpulsantwort. In der vorliegenden Arbeit
werden Methoden zur Verkiirzung der Kanalimpulsantwort
durch lineare Filter diskutiert. Es wird ein einfaches Ver-
fahren von der optimalen MMSE-Lésung fiir Entzerrer mit
quantisierter Riickfithrung abgeleitet, das die Berechnung
eines linearen Gleichungssystems erfordert. Dieses wird mit
der bekannten Eigenvektor-Losung von Falconer und Magee
unter dem Aspekt der Viterbi-Detektion verglichen. Anhand
von Simulationsresultaten wird gezeigt, daB die einfache
MMSE-Lasung gegeniiber dem komplexeren Eigenvektor-
Verfahren Vorteile aufweist.

1. Introduction

In 1972, Forney presented an optimum receiver struc-
ture for data transmission in presence of intersymbol
interference [1]. This receiver consists of a matched
filter (which takes the transmitter filter and the channel
impulse response into account), a digital symbol-rate
decorrelation filter for whitening the coloured noise,
and finally a Viterbi-detector. The complete data trans-
mission system can be described by the equivalent
symbol-rate impulse response which includes all the
filters mentioned [2]. The complexity of the receiver
grows exponentially with the length of the equivalent
symbol-rate impulse response (due to the exponential
increase of Viterbi states). Consequently, in several pa-
pers suboptimum receivers with reduced complexity
were investigated. For example, Falconer and Magee
introduced a linear pre-filter to truncate the length of
the equivalent symbol-rate impulse response [3]. In this
approach the solution of an eigenvalue problem is nec-
essary. In the present paper an alternative method will
be presented which is based on the closed-form MMSE-
solution (minimum mean-squared error) for nonlinear
decision-feedback equalizers combined with a linear
nonrecursive pre-filter (FIR-DF equalizer). This ap-
proach requires the solution of a set of linear equations.
The coefficients of the FIR pre-filter represent directly
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the impulse response of the intended time-truncation
filter whereas the decision feedback coefficients com-
bined with an additional unit impulse describe the resid-
ual impulse response at the output of the pre-filter which
is to be fed to the Viterbi-detection unit.

Both solutions are derived in Section 3; in Section 4 a
comparison between these methods is carried out under
the aspect of the Maximum-Likelihood Sequence Es-
timation (MLSE) error performance. For convenience,
in the next section a brief analysis of the MLSE per-
formance will be given which is necessary to under-
stand the different properties of the eigenvector and the
MMSE time truncation methods.

2. Analysis of Maximum-Likelihood Se-
quence Estimation

Fig. 1 shows the equivalent symbol-rate model of a
data transmission system. The system part drawn in
dashed lines should be neglected for the moment. The
impulse response f(%) — < means the symbol-rate time
index — is calculated by convolution of the transmit-
ter filter, channel, and receiver matched filter impulse
responses, symbol-rate sampling and convolution with
the symbol-rate decorrelation filter impulse response.
The additive noise is white and gaussian [2]. The
Viterbi-detector must be supplied with the impulse
resonse f(i) which has to be estimated by means of
certain training sequences or by the decided data, re-
spectively. Due to the v-symbol delay of the Viterbi-
detector the received signal y(z) has to be delayed by
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Fig. 1. Symbol-rate model of a data transmission system.

v symbols as well in order to get a correct channel
estimate.

The receiver shown in Fig. 1 is optimum, i.e. the
symbol error rate is minimum for any transmission
channel actually given. On the other hand, the value
of the symbol error rate depends on the specific chan-
nel impulse response. Thus an analysis of worst-case
channel configurations is of particular interest. This
problem has been investigated by several authors. In
the present paper we follow the analysis given in [4].

During the Viterbi-detection an error event is charac-
terized by a specific divergence between the estimated
and the true path in the trellis diagram. The length of
an error event is denoted as L. Then we get specific
sequences of symbol errors which are decribed by cor-
responding error vectors

e = [eo,e1, - en-1]T (1)

where
1
dmin

Here i, describes the beginning of an error event; d(z)

-

and d(1) are the true and the decided data. Note that the
minimum value of any error vector element is one due
to the normalization by the minimum distance between
any pair of data symbols

Briin = min{|dv = d.u|}1 v # =8

The first and the last elements of any error vector are
non-zero.

The error analysis given in [4] shows that the symbol
error rate is characterized by the well-knownerrorfunc-
tion complement erfc(-); in case of M-ary PSK (phase
shift keying) we get

(at(ie +v) —d(i. + u)) ;

e, =

Bys i
P, = Ky, erfc ( ld(M)'?’rzninN_osm E) , (2)
where K,_, is a positive factor which is of minor

interest, in contrast to the value ymin in the argument
of the erfc-function by which the Ej/Ny-ratio (E; =
symbol energy per bit, No/2 = noise power density)
is reduced. The value of 2, is called SNR-loss: if
72 < 1 a large degradation of the Viterbi-detection
may occur due to the extremely steep descent of the
erfc-function. Thus the SNR-loss is a very important
parameter to describe the symbol error performance of

the Viterbi-detector; the SNR-loss is determined by
s nﬂén{e' F'Fe} = mgn{f" Rt (3)

with the definitions

o f = [fo, f1,. .-, fm]T, vector of equivalent symbol-
rate impulse response,

¢ F, convolution matrix corresponding to f,

e R.., energy autocorrelation matrix of error vector
e.

The asterisks denote the transjugated forms of vectors
or matrices, respectively (i.e. transposed with conjugate
complex elements).

Eg. (3) can be exploited to calculate the SNR-loss for
a given impulse response vector f: From a theoretical
point of view all error vectors e possible have to be ex-
amined in order to find the minimum value of ¥2;_ . On
the order hand under practical conditions the lengths of
the worst case error vectors usually lie below a certain
maximum value, say 4 or 5. Thus a pragmatic solution
to determine the SNR-loss under a fixed given vector £
is to restrict the maximum length of e to a certain limit
and then examine the finite number of error vectors in
order to find the minimum value of e*F*F*e. In most
cases the true SNR-loss will be found in that simple
way. It should be mentioned, however, that there exists
a straight forward method to find the global minimum
even in presence of limit cycles, i.e. vectors of infinite
length [5]. This method will not be further discussed in
this paper.

A very interesting problem is a unique formulation
of those worst case channels which lead to the gobal
minimum value of ¥Z;, . The solution of this problem
is explained e.g. in [4]:

e The global minimum of 42, is identical to the min-
imum eigenvalue of the energy autocorrelation ma-
trix R... corresponding to the worst case error vector.

e The corresponding worst case channel impulse re-
sponse fmin is identical to the corresponding eigen-
vector.

The fundamental problem is to find the worst case
error vectors that result in the minimum eigenvalue of
R... Some results of worst case channels with special
channel order constraints published e.g. in [2], [6] are
summarized below.

o real- and complex-valued 1st-order-channels [2], [6]
72, = 1 — SNR-loss 0 dB

f= i[li _e—je]T’ (4)

72

o real-valued 2nd-order-channels, real data [2]
¥2:a = 2 — /2 — SNR-loss 2.3 dB

£= {1, V21", (5)

e complex-valued 2nd-order-channels, complex data

[6]
y2. =2 —+/2 — SNR-loss 2.3 dB

f= %[e—i‘, V2, e . (6)
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For the phases @ the following values have to be
picked

3
QPSK : 6 € {0, g,w, > (a)
il

T
4,5,...,;1}.

The case of complex-valued 2nd-order channels with
complex data was discussed in [6] under the assumption
of error vectors with a maximum length of 2. This is
true for real-valued channels in presence of real data.
However, further investigations show that the worst
case is obtained for increased length. For complex-
valued channels and QPSK transmission we get [7]

8PSK : 6 € {0, (7b)

72, = 0.4689 — SNR-loss: 3.3 dB

error vectors:

I ML
o={ bt g e
equivalent impulse response:
e fo[l,:FG(l-i-j),j‘]T
4t { fol1, Fa(1 — 5), —4]T (85)

with
a=1.132782,

symbolic error rate:

3
P,  gerfc(1/0.4689 - By/No).  (8c)

3. Time Truncation of the Channel Im-
pulse Response by Linear Filtering

In the previous section some fundamental relations be-
tween the equivalent symbol-rate channel impulse re-
sponse and the symbol error rate performance of the
Viterbi-detector were discussed. These considerations
were restricted to 1st- and 2nd-order channels. In re-
alistic data transmission systems channel impulse re-
sponses my occur that are far longer; in these cases
the complexity of the Viterbi-dector is extremely high.
Thus an appropriate (suboptimum) solution is the in-
troduction of a pre-filter by which the channel impulse
response is time truncated. One of the very first ap-
proaches by Qureshi and Newhall [8] was improved
by Falconer and Magee [3] by the introduction of a
constant energy constraint (at the Viterbi input). An al-
ternative method was presented in [6] which is based
on the analysis of the channel: zeros near the unit circle
are taken into account by the Viterbi-detector whereas
the non-critical zeros with sufficient distance from the
unit circle are canceled by linear equalization. In the
present paper an alternative very simple method will be
presented which is based on the closed-form MMSE so-
lution to the decision feedback equalization combined
with a linear pre-filter.

decider

Fig. 2. Decision-feedback equalizer with non-recursive pre-filter
(FIR-DF equalizer).

3.1 MMSE-Solution

Consider Fig. 2 which demonstrates the concept of an
FIR-DF-equalizer. The linear pre-filter e(4) is intro-
duced to restrict the number of the feedback coeffi-
cients g(2) to a certain prescribed number m. A unique
solution to the problem can be given by the minimiza-
tion of the power of the decider-input noise (which is
composed of gaussian channel noise and residual in-
tersymbol interference). For a compact mathematical
formulation some vectors are defined.

e state variables of the FIR pre-filter:
1),...,2(i—n)]"
¢ decided data (assume correct decisions):

d = [d(i—io—1),d(i—i0—2),...,d(i—io—m)]T
(%)

(9a)

x = [2(3), 2(i -

o transjugated coefficient vectors:

e’ = [e(0),e(1),...,e(n)], (9¢)
g =[g(1),9(2),-..,9(m)]. (9d)

In (9b) 7 describes the time delay introduced by the FIR
pre-filter. By means of these definitions an appropriate
MMSE cost-function is given as

Puse = E{| yo(i) — d(i —i0) |*} =
= E{|e"x—g'd —d(i — i) |*}. (10)
This cost-function is minimized on condition that

OFuse _ 9Fuse

e e

(11)

After some fundamental calculations this condition re-
sults in a set of linear equations

E'Rzz - g‘R,;d = I‘;d,

*
e'R;,—g'Ras =1y

(12a)
(125)

where the following definitions are used:
(n+1) x (n+1) autocorrelation matrix of the received

signal:
R.. = E{xx"},

m X m autocorrelation matrix of the data:
Ryy = E{dd"},
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m X (n + 1) crosscorrelation matrix:

R.q = E{dx*'} = [rza(—io — 1 — 7 + k)]; ks
j: 1,...,m, o= 1,...,‘ﬂ.+l,
r;d ¥ E{d(t'_ ‘I;Q)'X*} o~ [rrd(“‘iﬂ)s . ‘rr::d(n_iO)]s
rhy = E{d(i —i)d*} = {Tdd(l), 3 .,rdd{m)].

The solution of (12) leads to closed-form expressions
for the FIR-DF coeffcients.

€' = (riq — r2aRzi Rea)(Reoe — R;aREleME);I:)

13a

g’ = (e"Ryy —ria)Ry, - (130)

For the important case of uncorrelated data the equa-
tion can be simplified. Since

2
Rddzc}'d-l, I‘ddZU

(where I denotes the unit matrix), we get

* * 1 —
e’ =rl (R, — a_zR:dR“] 3 (14a)
d

1
g“l = _EE*R;d- (14b)
T4
Eq. (14b) shows that the decision-feedback coefffi-
cients g(1), ..., g(m) are identical with the convolu-
tion result

f(3) * e(2) lizio4r= g(v), (15)

i.e. the impulse response samples at the output of the
pre-filter. This is true even under additive noise influ-
ence as long as the noise is uncorrelated with the data.

The sample g(0) = f(i) * e(z) |i=i, should be one
under ideal conditions — in case of additive noise it is
slightly less than unity. Its value is uniquely determined
by correlation: In case of uncorrelated data we get

9(0) = £(3) * e(i) limio=
= G—TgE{y(i)d*(i g G—};d (16)

=1 ..,

The relation between the FIR-DF solution derived
above and the time truncation problem is obvious: If
we disconnect the feedback path of the equalizer we
get the time truncated impulse g(0),¢(1),...,g(m)
at the pre-filter output. The samples outside the time
intervall 79 < @ < 1o + m are suppressed in the mini-
mum mean-squared error sense. In connection with the
MLSE structure the nonlinear part of the equalizer has
to be replaced by the Viterbi-detector (see Fig. 1) which
has to be supplied with the coefficients g(0), ..., g(m)
determined by (13a,b) or (14a,b), respectively, and (16).
It should be mentioned that these closed-form solutions
may be replaced by iterative adaptive algorithms, e.g.
the stochastic gradient search method.

3.2 Falconer’s and Magee’s Eigenvector Solution

The solution published in [3] will be briefly reviewed
for convenience since in the original paper only real-
valued channels are taken into account instead of the

general complex case. The approach is based on the
cost-function

m

Fuse = B{| §(5) - ) §(v)d(i — io) |’}

v=0

(17)

which can be rewritten in vector representation
Fusp = €' Roc8—8'R.,E— 8 Rea+ 878 (18)

The symbols "~" introduced here indicate that we use
slightly different definitions due to the fact that the data

vector d now contains the additional element d(z — 7o)
at the first position:

d* = [d'(i—40),d" (s — G0 — 1),...,d" (i — i — m)],

~ > (19a)
R4 = E{dx"}, (19b)
g* e [6(0):§(1)11§(m)1 (19(:)

At first, we formulate the MMSE solution for the
pre-filter e under a fixed vector g. The condition

BF‘MSE/Se = 0 yields

& = g R (20)
This solution is put in eq. (18)
Fuse = &'[I- ReaRIR;JE. (21)

This expression should be minimum under the supple-
mentary condition of constant energy of g

g8 = 1.
It is well known that this problem leads to an eigenvalue
problem: The optimum solution for g is the eigenvector
of the matrix

(22)

= R.4R;JR;,|

corresponding to the minimum eigenvalue. For the de-
termination of the pre-filter impulse response € the op-
timum vector g is put in eq. (20).

It is an important fact that the Falconer-Magee so-
lution is biased in the sense that the vector g derived
from the eigenvalue problem is not identical with the
impulse response at the pre-filter output in presence of
additive noise, i.e.

f(3)*e(d) lizigrv=G(v)+e(v), v =0,...,m. (23)

So if the vector g is fed to the Viterbi-detector as an
estimate of the equivalent channel impulse response (as
suggested by Falconer and Magee) the error &(v) will
cause a degradation. To avoid this disadvange a seperate
channel estimation procedure would be necessary.

4. Comparison of MMSE and Eigenvec-
tor Solution

To illustrate the different properties of both time trun-
cation methods discussed above we apply a 16th-order
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Fig. 3. Channel 1 in equivalent baseband representation: (a) real
part of the impulse response, (b) zero configuration.
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Fig. 5. Impulse truncation with reduced length (m + 1 = 4,
no channel noise): (a) MMSE: real pari of the truncated impulse
g(2), (b) zero configuration of G(z), (¢) Eigenvector-solution:
real part of the truncated impulse §(2), (d) zero configuration of
G(z).

Fig. 4. Impulse truncation results (m + 1 = 5, no channel
noise): (a) MMSE: real part of the truncated impulse g(3), (b)
zero configuration of G(z), (c) Eigenvector-solution: real part

of the truncated impulse §(1), (d) zero configuration of G(z).

channel model with randomly picked coefficients. This
can be regarded as an instantaneous configuration of
a frequency selective Rayleigh channel. The real part
f'(3) of the impulse response f(z) ist plotted in Fig.
3a. Fig. 3b shows the corresponding zero configura-
tion in the z-plane; note that in this example 4 zeros
lie approximately on the unit circle (“critical zeros”)
whereas 12 zeros can be regarded as “non critical”.
MMSE and eigenvector solution can be compared by
means of Figs. 4a—d; in this case no channel noise was
present. The lengths of the truncated impulses g(2) and
(i) were prescribed as m + 1 = 5, both. The order
of the pre-filter is n = 32 (ip = 22). Both results,
g(3) and g(z), are approximately equal (apart from a
constant factor). It is rather instructive to consider the
zeros of the z-transforms of g(z) and g(z). Obviously,
the are approximately the same as the critical zeros
of the original channel: Only the non critical channel
zeros are compensated by the pre-filter whereas the
critical zeros remain nearly unchanged — provided that
the value of m is sufficiently large (m > number of
critical channel zeros). If this condition is not met it is
not possible to collect the m critical zeros in the trun-
cated impulses g(4) and g(2). This fact is demonstrated

a) M3E: Giz)

b} eigemveetor: Giz)

Imiz) —
=

Fig. 6. Impulse truncation under additive noise (EB/NQ ==
10dB, m+1 = 5): (a) MMSE, zeros of G(z), (b) eigenvector-
solution, zeros of é(z)

by Figs. 5a—d for m = 4: The zeros of the MMSE
solution are shifted inwards the unit circle whereas the
zeros of the eigenvector solution remain located very
near to the unit circle (of course, their positions differ
from the positions of the original critical zeros). The
time truncation of the impulse response is satisfactorily
solved in both cases.

In the next example additive white noise is intro-
duced. The ratio E,/No (symbol energy/ noise spec-
tral density) is 13 dB. In case of QPSK transmission
this corresponds to E3/Ng = 10 dB. The zero config-

urations of G(z) and G(z) are depicted in Figs. 6a, b.
Although the length of the truncated impulses is chosen
sufficiently large (m + 1 = 5) the zeros are removed
from the ideal positions of the 4 critical channel zeros:
In case of the MMSE solution they are again shifted
inwards the unit circle whereas in the eigenvector ap-
proach they remain on the unit circle — the zero angles,
however, are changed in comparison with the critical
channel zeros.

It is instructive to compare the signal-to-noise prop-
erties of both solutions. The signal to noise ratios at
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the pre-filter output (composed of additive noise and
intersymbol interference) are

SNRyse = 8.61dB,
SNRgigenvec = 10.12dB.

Obviously the SNR of the eigenvector solution is
greater than that of the MMSE approach. This is not
surprising since the Falconer-Magee approach leads to
maximum SNR possible due to the condition of con-
stant engery at the pre-filter output included here. On
the other hand, the zero configuration of G(z) is sig-
nificantly different from that of G(z). The eigenvector
approach tends towards the worst case channel configu-
rations analysed in Section 2. This fact is demonstrated
by the following analysis of both solutions with re-
gard to the SNR-loss connected with Viterbi detection
(according to eq. (3))
MSE-result:
SNR-loss = 0 dB,
error vectors reduce to length 1.
Eigenvector-result:

SNR-loss = 2.58 dB,

4 worst-case error vectors of length 3

oo [ LI+

i[J) o j: _l}T
This result shows that the advantage of a greater SNR
at the pre-filter output in the eigenvector approach is
compensated by the increased SNR-loss introduced by
the Viterbi algorithm.

The ideal receiver discussed in Section 2 is based on
the assumption of white gaussian additive noise (due
to the introduction of a symbol-rate decorrelation fil-
ter). In the suboptimum method with impulse truncation
noise colouring is introduced. Under the application of
Euclidean metric in the Viterbi-detector this results in
a more of less severe degradation in symbol error per-
formance. In general the noise colouring influence in
the eigenvector solution is significantly more intensive
than in the MMSE result. This can be explained as
follows. In the eigenvector solution the remaining m
zeros are located on (or near) the unit circle. This is true
even under additive noise — in this case, however, their
positions are different from the positions of the critical
channel zeros. Consequently, these “new” critical ze-
ros must have been introduced by the pre-filter which
results in a more intensive noise colouring than in the
MMSE solution where the new zeros are non critical.
The different noise colouring of both solutions is illus-
trated in Fig. 7b which shows the spectral density of the
pre-filter output noise. In this case a real-valued chan-
nel impulse response was applied (see Fig. 7a) which
has been used in [3] as a worst-case channel example.

The present section is concluded with some inves-
tigations on the QPSK symbol error rate under white
gaussian noise and intersymbol interference introduced
by the channel impulse response shown in Fig. 7a.

At first consider the simulation results for both time
truncation methods given in Fig. 8. Obviously the
MMSE solution is slightly superior over the eigenvec-
tor apprach. For comparison the theoretical symbol-

1) channet

) noise power density

i -+

Fig. 7. Noise colouring by pre-filtering: (a) example channel
2, impulse response, (b) noise power density after pre-filtering
(—MMSE; ——— Eigenveclor solution).

symbol error rale —

B ey TREEE T WEEE
Ey/Ny indB —

Fig. 8. Symbol error rates in QPSK transmission (channel 2, see
Fig. 7a).

error rates are shown where the SNR-loss of the Viterbi-
detection is taken into account. As explained above the
SNR-loss in the eigenvector solution is greater than
the gain in SNR at the pre-filter output. The difference
between this theoretical model and the simulation can
be explained by the influence of the noise colouring
which is not included in the computational solution.
Finally the symbol error rate of the classical decision
feedback equalizer (based on the MMSE solution) is
given in Fig. 8. Compared with the Falconer-Magee
solution it shows only a small degradation in symbol
error performance whereas the MMSE time truncation
method combined with Viterbi-detection leads to an
impgovemenl of about 2.5 dB (at a symbol error rate of
10~3).

5. Conclusion

In the present paper suboptimum receivers with Viterbi-
detection were discussed. A non-recursive pre-filter
was introduced for channel impulse response time trun-
cation in order to reduce the complexity of the Viterbi
algorithm. Two different time truncation methods were
compared: the well-known eigenvector solution by Fal-
coner and Magee and a simple MMSE approach. The
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comparison of both methods leads to the following fun-
damental conclusions:

» Without channel noise both solutions lead to approx-
imately the same result, provided that the prescribed
length of the truncated impulse is sufficient (m >
number of critical channel zeros).

» For reduced length of the truncated impulse or un-
der additive channel noise both solutions are dif-
ferent. The zeros of the MMSE solution G(z) are
shifted inwards the unit circle whereas the zeros of
the eigenvector solution G(z) are located near the
unit circle.

» Noise colouring is intruduced by the pre-filters. In
the eigenvector solution this colouring is more inten-
sive than in the MMSE result due to the new critical
zeros introduced by the pre-filter.

« In contrast to the MMSE result the eigenvector solu-
tion tends towards the well-known worst-case chan-
nel configuration which causes a significant perfor-
mance loss in the Viterbi-detector. The gain in SNR
at the pre-filter output is compensated by the SNR-
loss of the Viterbi-detector.

The examples regarded in this paper show that the
MMSE solution is superior over the eigenvector ap-
proach. Indeed, the gain in performance is rather small,
but is has to be taken into account that the MMSE de-
sign of the pre-filter is very simple compared with the
Falconer-Magee approach which requires the solution
of an eigenvalue problem. Furthermore, the MMSE
method allows the formulation of very simple adaptive
algorithms, e.g. on the basis of the stochastic gradient
search.

Acknowledgement

M. Benthin, B. Jelonnek and T. Karp are gratefully acknowl-
edged for some helpful discussions and their support in carrying
out the simulations. Furthermore | wish to thank the anonymous
reviewer for his critical comments on the first version of the

paper.

References

[1] Forney, G. D.: Maximum-likelihood sequence estimation
for digital sequences in the presence of intersymbol inter-
ference. IEEE Trans. IT- 18 (1972), 363-378.

[2] Proakis, I.: Digital communications. New York: McGraw-
Hill, 1989.

[3] Falconer, D. D.; Magee, F. R.: Adaptive channel memory
truncation for maximum-likelihood sequence estimation.
Bell Syst. Tech. J. 52 (1973), 1541-1562.

[4] Kammeyer, K. D.: Nachrichteniibertragung,. Stuttgart: Teub-
ner Verlag, 1992.

[5] Burkhardt, H.; Barbosa, L. C.: Contributions to the applica-
tion of the Viterbi-algorithm. IEEE Trans. IT- 31 (1985).

[6] Behm, W.: Eine Datenempfingerstruktur mit additivem,
rekursivem Entzerrer und Viterbi-Detektor. TU Hamburg-
Harburg: Wissenschaftliche Beitridge zur Nachrichtentech-
nik und Signalverarbeitung Nr. 12, hrsg. von N. Fliege und
K. D. Kammeyer, Arbeitsbereich Nachrichtentechnik, 1991.

[7] Benthin, M.; Kammeyer, K. D.: Ungiinstigste Ubertra-
gungskanile bei Viterbi-Detektion digitaler Daten, Jahres-
bericht 1991/92, Arbeitsbereich Nachrichtentechnik, TU
Hamburg-Harburg, 1992, 53-56.

[8] Qureshi, S.; Newhall, E.: An adaptive receiver for data trans-
mission over time dispersive channels. IEEE Trans. IT- 10
(1973), 448-457.

Karl-Dirk Kammeyer was born in
Bremen, Germany, on October 15,
1944. He received the Dipl.-Ing. degree
in electrical engineering from the Tech-
nical University of Berlin, Germany,
in 1972, and the Dr.-Ing. degree from
the University of Erlangen, Germany,
in 1977.

From 1972 to 1979 he worked in
the field of data transmission, digital
signal processing, and digital filters at
the Universities of Berlin, Saarbriicken and Erlangen, Germany.
From 1979 to 1984 he was with the University of Paderborn,
Germany, where he was engaged in digital broadcastingsystems.
Since 1984 he has been a Professor of Digital Signal Processing
at the Technical University of Hamburg-Harburg, Germany. His
research interests are digital (adaptive) systems, signal process-
ing in telecommunications, digital mobile radio transmission.



