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Abstract—The concept of Virtual Antenna Array (VAA) is a
promising approach to apply MIMO concepts in relaying systems.
In order to fulfill a given Quality-of-Service (QoS) requirement
while reducing the power consumption of the entire system,
efficient resource allocation strategies have to be developed.
The optimum power allocation solution corresponds to a convex
optimization problem. To achieve an analytical solution, the
approximative approach IAPA (Improved Approximative Power
Allocation) has been proposed by the author. Within this paper
this closed-form solution is further analyzed and analytical
expressions for the power allocation in case of symmetric relaying
networks are derived. Thereby, an approach for analyzing and
optimizing different multi-hop scenarios is developed.

I. INTRODUCTION

Recently, the application of MIMO techniques to spatially
separated relaying nodes has gained considerable interest in
the research community [1]–[4]. In case of distributed MIMO
multi-hop networks adjacent nodes are combined into so called
VAAs, whereby the source-destination link is separated into
several hops. In each hop the nodes of the transmit VAA serve
as virtual transmit antennas of a ”distributed” space-time code
and the nodes of the receive VAA perform independent data
detections. It has been shown, that such a distributed MIMO
multi-hop network achieves significant capacity improvements
in comparison to single-hop communications.

One of the most important issues in the design of such
a wireless multi-hop network is the optimized allocation of
transmit power to the distinct VAAs, as the power consumption
of the terminals may be one of the most limiting factors for
future communication systems. On the other hand the power
allocated to the nodes has to be large enough to support
the required QoS. To this end, several resource allocation
strategies have been presented to meet an end-to-end (e2e)
ergodic capacity or error-rate, e.g., [2]–[5]. However, as the
majority of today’s wireless communications happen over
slow-fading channels, i.e., non-ergodic in the capacity sense,
the consideration of the e2e outage probability is of higher
practical relevance. For multi-hop networks applying the
Decode-and-Forward (D&F) [1] protocol several approaches
for minimizing the total transmit power while meeting the e2e
outage constraint have been proposed by the author in [6]–[8].
In this paper the near-optimum closed-form solution IAPA [7]
is further analyzed and used to derive analytical expressions
for the power assignment in symmetric relaying systems.

The remainder of this paper is organized as follows. The
system model and the optimization task are introduced in
Sections II and III, respectively. The approximated power
allocation problem as well as algebraic solutions are presented
in Section IV and analytical investigations with respect to the
IAPA approach are given in Section V. The performance is
evaluated in Section VI and the paper is concluded by the
summary in Section VII.

II. SYSTEM DESCRIPTION
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Fig. 1. System model for a distributed MIMO multi-hop network with
highlighted MISO link in the second hop.

We consider a multi-hop system where the source commu-
nicates with the destination via K−1 VAAs as shown in Fig. 1.
The nodes within one VAA decode the information separately
but re-encode the decoded information by using a spatial
fraction of the choosen space-time code word. Therefore,
the transmission within one hop can be modeled as several
multiple-input single-output (MISO) systems. It is assumed
that each VAA transmits signals with the same rate R and
all hops use the total bandwidth W that is available to
the network. Let k index the hop and tk, rk denote the
number of transmit nodes and receive nodes within the kth
hop, respectively. With Sk ∈ C

tk×T defining the space-time
encoded signal of length T transmitted from the tk nodes at
hop k, the corresponding received signal yk,j ∈C

1×T at node
1 ≤ j ≤ rk of VAA k + 1 is given by

yk,j =
√

θk Pk

tk
hk,jSk + nk,j , (1)

where nk,j denotes the Gaussian noise vector with power
spectral density N0 and Pk is the total power of the kth VAA.
The channel from the tk transmit nodes to the jth receive node
within hop k is expressed as hk,j ∈C

1×tk containing complex
zero-mean circular symmetric Gaussian distributed elements



with variance 1. We assume that the relaying nodes belonging
to the same VAA are spatially sufficiently close as to justify a
common path loss θk =d-ε

k between two adjacent VAAs, where
dk is the distance between the transmit and receive nodes at
hop k and ε is the path loss exponent within range of 2 to 5.

III. OPTIMUM POWER ALLOCATION

The outage probability Pout,k,j =Pr(R>Ck,j) of receiving
node j in hop k defines the probability that the transmit rate
R is greater than the rate

Ck,j = W log2

(
1 +

Pk

dε
ktkWN0

‖hk,j‖2

)
(2)

supported by the instantaneous channel realization [9]. It is
expressed as a cumulative distribution function (CDF) and
depends on the fixed transmission parameters and the channel
condition within the hop and equals

Pout,k,j = Pr
(‖hk,j‖2 < xk

)
=

γ(tk, xk)
Γ(tk)

. (3)

To ease notation, the system parameters of the kth hop have
been collected in the variable

xk = (2
R
W − 1)dε

ktkWN0/Pk = Qdε
ktk/Pk (4)

being inversely proportional to the signal-to-noise-ratio of
hop k and the variable Q = (2

R
W − 1)WN0 contains the

system-wide parameters bandwidth, noise power and data rate.
Furthermore, as ‖hk,j‖2 obeys a Gamma distribution, the
CDF is given by the incomplete Gamma function γ(tk, xk) =∫ xk

0
e-uutk-1 du normalized by the Gamma function Γ(tk) [9].

As the same path loss is assumed within a hop, each MISO
system of the hop has the same outage probability and hence
the outage probability of the kth hop is given by

Pout,k = 1 −
rk∏

j=1

(1 − Pout,k,j) = 1 − (1 − Pout,k,j′)rk , (5)

where j′ indexes an arbitrary j ∈ {1, . . . , rk}. Since D&F
is applied, the signals are completely decoded at each VAA,
so that the outage probabilities per hop Pout,k are mutually
independent. For simplicity, it is assumed that the e2e com-
munication is in outage if any of the MISO systems can not
correctly decode the information [2]. With this pessimistic
assumption the e2e outage probability corresponds to

Pe2e = 1 −
K∏

k=1

(1 − Pout,k) = 1 −
K∏

k=1

(1 − Pout,k,j′)rk (6)

and serves as the measurement for the required QoS in
the subsequent investigation. The optimal power allocation
minimizes the transmit power Ptot of the whole network
while meeting the e2e outage probability requirement e, i.e.,
Pe2e ≤ e. It can be shown that the optimization problem

minimize Ptot =
K∑

k=1

Pk (7a)

subject to Pe2e = 1 −
K∏

k=1

(1 − Pout,k,j′)rk ≤ e . (7b)

is convex for low outage probability constraints e [10]. Un-
fortunately, no closed-form solution in terms of the power Pk

per hop is available for this convex optimization problem, so
that standard optimization tools, as presented in [11], have to
be used. In order to ease calculation and to achieve a closed-
form solution, the Improved Approximative Power Allocation
(IAPA) has been proposed in [7]. In the sequel the applied
approximations as well as the achieved closed-form solution
for the power allocation will be summarized.

IV. APPROXIMATED POWER ALLOCATION

A. Near-Optimum Optimization Problem

For practical systems the low outage probability region (e.g.,
e = 1%) is of interest requiring sufficiently large SNR, i.e.,
xk → 0. Based on this assumption the series expansion of the
incomplete gamma function can be truncated after the leading
term resulting in the approximation γ(tk, xk) ≈ t-1k xtk

k for
xk → 0. Thus, a simple approximation for (3) is achieved by
[6], [12]

P̃out,k,j =
t-1k xtk

k

Γ(tk)
=

xtk

k

Γ(tk+1)
. (8)

In the sequel symbols labeled by tilde indicate approximated
terms, i.e., P̃out,k,j denotes the approximation of Pout,k,j . By
further approximating the product representation of the outage
probability by a sum expression, the outage probability per hop
(5) is expressed as P̃out,k = rkP̃out,k,j′ = rkxtk

k /Γ(tk+1) and
the e2e outage probability (6) can be approximated by [6], [7]

P̃e2e =
K∑

k=1

P̃out,k =
K∑

k=1

rkxtk

k

Γ(tk + 1)
. (9)

Considering this approximated e2e outage probability, the
original optimization problem (7) can be simplified to

minimize Ptot =
K∑

k=1

Pk (10a)

subject to P̃e2e =
K∑

k=1

P̃out,k =
K∑

k=1

rkxtk

k

Γ(tk + 1)
≤ e . (10b)

As the union bound approximation (9) serves as an upper
bound for the exact outage probability (6), i.e., Pe2e ≤ P̃e2e,
the solution of problem (10) automatically fulfills the original
constraint Pe2e due to the more stringent e2e outage require-
ment [6]. The solution of (10) leads to a near-optimal power
allocation with increased power consumption compared to the
exact solution formulated in (7). However, this form permits
the construction of analytical or even closed-form approaches.

For this near-optimum power allocation the derivation of
the Lagrangian L(Pk, λ)=

∑K
k=1Pk+λ(P̃e2e−e) with respect

to Pk has to be equal for all k and the outage constraint (10b)
has to be met with equality, i.e., P̃e2e = e [6]. By setting the
derivations equal to a constant value, the relation

A = −Q
∂P̃e2e

∂Pk
=

rkP̃
tk+1

tk

out,k,j′Γ(tk + 1)
1

tk

dε
k

, ∀ k , (11)



is derived and has to be fulfilled for all k [7]. The value of
A will be 0 < A � 1 as the lower outage probability region
as well as distances dk ≥ 1000 m between the VAAs are
considered here. Several approaches for determining A have
been presented in [6], [7] and are outlined in the sequel.

B. Near-Optimal Power Allocation (NOPA)

By rewriting (11) with respect to P̃out,k,j′ , the outage
probability per hop P̃out,k = rkP̃out,k,j′ is given by

P̃out,k = rk

⎛
⎝ Adε

k

rkΓ(tk + 1)
1
tk

⎞
⎠

tk

tk+1

= ak · A
tk

tk+1 , (12)

where the coefficients

ak = rk

(
dε

k

rkΓ(tk + 1)
1

tk

) tk
tk+1

=
(

rk dε·tk

k

Γ(tk + 1)

) 1
tk+1

(13)

contain the parameters of hop k. Using this result in (10b),

the relation e =
∑K

k=1 P̃out,k =
∑K

k=1 akA
tk

tk+1 is achieved
to determine A. Thus, solving the optimization problem (10)
is equivalent to calculating the constant A that fulfills this
equation. Note that this result for A depends only on the
system configuration, but is independent of the system-wide
parameters collected in Q. A near-optimal power allocation is
achieved by rewriting the outage relation as a polynomial in
A

fa(A) =
K∑

k=1

ak · A
tk

tk+1 − e (14)

and searching for its real-valued and positive root Aa, which
can be determined by applying standard root-finding algo-
rithms. The outage probabilities per hop P̃out,k can then be
achieved by using the root Aa of fa(A) in (12). Applying
this result to (8) for determining xk, the near-optimal power
allocation P�

k per hop follows from (4)

P�
k =

Qdε
ktk

xk
= Qdε

ktk

(
rk

P̃out,kΓ(tk+1)

)1/tk

= Qtk

(
rkdε·tk

k

Γ(tk + 1)

) 1
tk+1

A
- 1

tk+1
a = QtkakA

- 1
tk+1

a

(15)

and the total transmit power P�
tot =

∑K
k=1 P�

k corresponds to

P�
tot =Q

K∑
k=1

tk

(
rkdε·tk

k

Γ(tk+1)Aa

) 1
tk+1

=Q
K∑

k=1

tkakA
- 1

tk+1
a . (16)

Unfortunately, no closed-form solution is available for de-
termining the roots of polynomials of arbitrary degrees and,
consequently, no closed-form solution is achieved for the
power allocation problem, yet.

C. Approximative Power Allocation (APA)

A simple closed-form solution can be derived under the
assumption, that the number of transmit nodes per hop tk for
k ≥ 2 is so large that the approximation tk

tk+1 ≈ 1 is valid.
Using this assumption and the fact that the source contains
only one antenna, the polynomial (14) is replaced by

fb(A) = b1 · A 1
2 + A ·

K∑
k=2

bk − e (17)

with coefficients achieved from (13) using t1 =1 and tk

tk+1 ≈1

b1 = (r1d
ε
1)

1
2 and bk = dε

kΓ(tk + 1)-
1

tk for k ≥ 2 . (18)

Equation (17) is a polynomial of degree two with positive root

A
1
2
b =

√
b2
1 + 4e

∑K
k=2 bk − b1

2
∑K

k=2 bk

. (19)

With this solution Ab the outage probability P̃out,k and the
power allocation P�

k per hop can be determined [6], [7]. Due
to the applied assumption for the number of transmit nodes per
hop, this approach leads to rather inaccurate solutions for small
tk resulting in an increased total transmit power. To overcome
this draw-back but still achieving a closed-form expression for
the power allocation, the subsequent improved APA has been
developed in [7].

D. Improved Approximative Power Allocation (IAPA)

To achieve an accurate but also closed-form solution for the
approximated optimization problem (10), the IAPA approach
incorporates the solution Ab (19) into the calculation of the
root Aa of fa(A) (14). This leads to an approximated solution
for the optimization parameter Aa given by [7]

Ãa = e2

(
a1 +

K∑
k=2

ak · A
tk−1
2tk+2

b

)-2

. (20)

Note that this approximation for the exact root Aa of fa(A)
leads to a power allocation which fulfills the e2e outage
requirement e in general. Thereby, an approximation for the
root of the higher-order equation (14) has been found, which
can then be used for the power allocation.

Theorem 1 (IAPA): For an arbitrary number of nodes tk per
VAA and a given e2e outage probability requirement e, the
near-optimal power allocation P�

k corresponds to

P∗
k = Q · tk

(
rkdε·tk

k

Γ(tk + 1)

) 1
tk+1

· Ã- 1
tk+1

a (21)

where the optimized system parameter

Ãa =e2

⎛
⎝√r1dε

1 +
K∑

k=2

(
rkdε·tk

k

Γ(tk + 1)

) 1
tk+1

· A
tk−1
2tk+2

b

⎞
⎠

-2

(22)

is determined by

A
1
2
b=

√
r1dε

1 + 4e
∑K

k=2 dε
k · Γ(tk + 1)-

1
tk −√r1dε

1

2
∑K

k=2 dε
k · Γ(tk + 1)-

1
tk

. (23)

In this theorem the given equations for Ab and Ãa have been
achieved from (19) and (20) by replacing the coefficients ak

and bk using (13) and (18), respectively. Thus, the dependency
of the power allocation solution from the system parameters
is illustrated.



V. INVESTIGATIONS

In the sequel the closed-form solution IAPA is applied to in-
vestigate properties of distributed MIMO multi-hop networks.

A. Relative Power Ratio Per Hop

Considering (16) and (21), the fraction of the total transmit
power assigned to hop k can be expressed by

ϑk =
P�

k

P�
tot

=
tk · ak · Ã- 1

tk+1
a∑K

κ=1 tκ · aκ · Ã- 1
tκ+1

a

. (24)

As will be demonstrated in Section VI, a large fraction of the
overall power is allocated to the first hop. Thus, it is evident
to define also the fraction ξk =P�

k/P�
1 of power assigned to

hop k with respect to the power P�
1 transmitted by the source

(i.e., ξ1 =1 holds by definition)

ξk=
P�

k

P�
1

=
tkakÃ

- 1
tk+1

a

a1Ã
- 1
2

a

=
tk√
r1dε

1

(
rkdε·tk

k

Γ(tk+1)
Ã

tk−1
2

a

) 1
tk+1

, (25)

where (13) was used to simplify the expression. With this
variable ξk also the power fraction (24) is given due to the
relation ϑk = ξk/

∑K
κ=1 ξκ. Thus, closed-form expressions

for the relative power assignment per hop have been achieved
for arbitrary system configurations.

From (24) it is obvious, that the portion of power occupied
by hop k is independent from the system-wide parameters
bandwidth, noise power and data rate combined in the variable
Q. If for example P�

tot,1 is known for a data rate R1,
respectively a configuration Q1, the total power for another
configuration Q2 is simply given by

P�
tot,2 =

Q2

Q1
· P�

tot,1 =
2

R2
W − 1

2
R1
W − 1

· P�
tot,1 (26)

and the transmit power for node k corresponds to

P�
k,2 = ϑk ·P�

tot,2 =
Q2

Q1
·ϑk ·P�

tot,1 =
2

R2
W − 1

2
R1
W − 1

·P�
k,1 . (27)

Thus, the optimization problem for one system configuration
(i.e., number of hops k, distances dk, and number of receive
and transmit nodes per VAA) has to be solved only once for an
arbitrary Q. The power assignment for the data rate of interest
is then easily achieved by (26) and (27), respectively.

B. Same Number of Nodes per VAA and Equal VAA Distances

Subsequently the special case of an equal number of nodes
per VAA with an constant distance d = dk for k = 1, . . . ,K
between the VAAs is investigated. A practical example for
such a symmetric architecture is given by a wireless backhaul
network with fixed relays. Let t denote the number of nodes
per VAA, then tk = t for 2≤ k≤K and rk = t for 1≤ k≤
K−1 follows. As one antenna is assumed at the source and at
the destination we have t1 = rK = 1. With these assumptions
the coefficients (13) simplify to

a1 =
√

tdε , ak =
(

tdε·t

Γ(t + 1)

) 1
t+1

and aK = akt
- 1
t+1 (28)

and the coefficients (18) become b1 =a1 and bk =dεΓ(t+1)-
1
t .

Using these values, the root of the second order polynomial is

A
1
2
b =

√
tdε + 4edε Γ(t + 1)-

1
t −√

tdε

2(K − 1)dε Γ(t + 1)-
1
t

. (29)

and the IAPA approximation for the root of polynomial (14)
is given by

Ãa = e2

[
a1 +

(
K − 2 + t

- 1
t+1

)
akA

tk−1
2tk+2

b

]-2

=e2

[√
tdε+

(
K−2 + t

- 1
t+1

)(
tdε·t

Γ(t + 1)
A

tk−1
2

b

) 1
t+1
]-2

.

(30)

Furthermore, the closed-form expression for P�
tot (16)

P�
tot = Q

(
a1Ã

1
2
a +

(
K − 2 + t

- 1
t+1

)
takÃ

- 1
t+1

a

)
(31)

is achieved and the power ratio (25) reduces to

ξk =
(
tt+3 · dε·(t−1) · Γ(t + 1)-2 · Ã(t−1)

a

) 1
2t+2 (32)

for 2 ≤ k ≤ K − 1 and ξK = ξk t
- 1
t+1 . Finally, the ratio of

P�
tot assigned to hop 2 ≤ k ≤ K − 1 is given by

ϑk =
(

ξ-1
k + K − 2 + t

- 1
t+1

)-1
. (33)

For the first and the last hop this ratio specifies to ϑ1 = ϑk/ξk

and ϑK = ϑkt
- 1
t+1 , respectively. With these expressions rela-

tively simple closed-form relations for the power assignment
in symmetric relay networks have been achieved. A similar
derivation can also be done for more general system config-
uration, e.g., same of number of nodes per VAA but varying
distances. However, this leads to more complex relations.

VI. PERFORMANCE ANALYSIS

In the sequel the performance of the optimum power al-
location (OPT) achieved by numerical optimization w.r.t (7)
and IAPA are investigated for distributed MIMO multi-hop
networks with K hops, the same number of relaying nodes
t = tk, 2≤ k ≤K, per hop, equal distance d between hops,
and path-loss exponent ε=3. Furthermore, it is assumed that
the e2e communication over W = 5 MHz should meet an
e2e outage probability constraint e = 1% for noise power
N0 =−174 dBm according to the UMTS standard.

Fig. 2 shows the total power consumption for t = 3 nodes
per hop, varying number of hops but a common distance of
d = 1 km between the hops. Thus, the distance of source
and destination varies with the number of hops and equals
K ·d. From the figure it is obvious, that our suboptimum but
efficient IAPA approach results in almost the same total power
Ptot as the optimum allocation method. However, this result is
achieved with significantly lower complexity. To even see the
difference, a zoom into the graph for K =7 has been added.
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Fig. 2. Total transmit power for OPT and IAPA for t = 3 nodes per hop,
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The dependency of the required transmit power from the
number of nodes t per hop can be observed from Fig. 3 for
a fixed data rate of R = 5 Mbit/s. Based on this figure,
or analytical derivations with respect to (31), it is possible
to determine the optimal number of nodes per hop. It is for
example favorable to use t = 2 nodes in case of K = 3 hops,
but t = 3 nodes for a system with K = 5 hops. This figure
highlights also the strong reduction of total transmit power
required for a distributed MIMO architecture in comparison
to a SISO relaying system, i.e., for t = 1.
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Fig. 3. Total transmit power for OPT and IAPA versus number of nodes
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Fig. 4 a) depicts the relative power increment (RPI) of IAPA
defined by RPI = PIAPA

tot /POPT
tot . It can be observed that the

power increment of our sub-optimum solution vanishes almost
for larger number of nodes t and is rather small also for small
t in case of small number of nodes. This demonstrates, that
IAPA achieves a near-optimal power allocation for a wide
range of system configurations. Consequently, a very powerful
analytical approach has been achieved for optimizing and
analyzing even complex multi-hop networks. Finally, Fig. 4 b)
shows the fraction of power assigned to the hops by the
optimum power allocation and by the expression (33) for a
varying number of nodes t and K = 5 hops. Obviously, the
developed closed-form relation leads to practically the same
relative power assignment. Furthermore, it is evident that most
of the power is transmitted by the source, as no diversity can
be exploited in the first hop. Each hop 2≤ k ≤K−1 has to
support t MISO system and, consequently, the same amount
of power is assigned to these hops. Less power is spent for
the last hop, as only one MISO system has to be supported.
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VII. SUMMARY AND CONCLUSIONS

In this paper the Improved Approximative Power Allocation
(IAPA) approach was considered for the optimization of dis-
tributed MIMO multi-hop networks. This closed-form solution
leads to an almost optimal power assignment also for complex
relaying systems. Based on this approach the fraction of total
power assigned to the hops was investigated and analytical
relations for symmetric relaying systems have been presented.
The shown performance results verify the applicability of
our IAPA approach for optimizing and analyzing multi-hop
networks. In future investigations the assumption, that the
system is in outage if any MISO link is in outage, will be
relaxed and the impact of MAC protocols will be considered.
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