
Modelling and Influences of Transmitter and
Receiver Nonlinearities in Optical OFDM

Transmission
Henning Paul and Karl-Dirk Kammeyer

Department of Communications Engineering
University of Bremen, 28359 Bremen, Germany
Email: {paul, kammeyer}@ant.uni-bremen.de

Abstract— In this paper, the main sources of non-
linear distortions for back-to-back (B2B) transmission
in an Intensity Modulation/Direct Detection (IM/DD)
fiber optical system are presented. The nonlinear
characteristics are modelled and their impact on an
OFDM signal are described by means of stochastic
considerations. Furthermore, the dependence of non-
linear distortions on tunable key parameters of the op-
tical transmission system is analyzed. Its performance
depending on these parameters is evaluated by means
of computer simulations.

Index Terms— Optical OFDM, Nonlinearities, B2B,
IM/DD

I. INTRODUCTION

ORTHOGONAL Frequency Division Multiplex-
ing (OFDM) is a promising new approach for

the optical long-haul high-speed data transmission
over single-mode fibers due to the ease of channel
equalization. In fiber optical communications, the
channel usually has an all-pass characteristic with a
phase response governed by group velocity disper-
sion resulting from the optical fiber [1]. However,
the nonlinearities introduced by modulator and de-
tector components of the optical system, but also
the nonlinearities introduced by the fiber itself pose
a challenge to OFDM. Thus, the impact of these
nonlinear effects has to be analyzed.
In this paper, we will restrict to the nonlinearities
of modulator and detector for the sake of simplicity,
thus only the so-called back-to-back (B2B) case with
no fiber involved will be considered. The optical
fiber itself would cause the memoryless nonlineari-
ties considered here to turn into a nonlinearity with
memory which has to be analyzed in future works.
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II. SYSTEM MODEL

The Zero-IF (Intermediate Frequency) Intensity
Modulation/Direct Detection (IM/DD) system con-
sidered in this paper is able to transmit real valued
baseband signals only. Thus, the OFDM signal has
to be generated in a special manner to ensure that
this requirement is fulfilled, e.g. by complex conju-
gate extension of the subcarriers. For the theoretical
considerations made in this work, the OFDM signal
is modelled by a real valued processX(t) with a
gaussian probability density function

pX(x) =
1

√

2πσ2
X

e
−

x
2

2σ2
X , (1)

whereσ2
X is the variance of the gaussian process.

This signalx(t) – being a realization of the process
X(t) – is fed into a chain of nonlinearities

z(t) = β2 cos2(m · c(x(t)) + ubias), (2)

where c(·) represents a hard clipping characteris-
tic with lower and upper clipping thresholdsclow

and chigh, see figure 1. The cosine characteristic
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Fig. 1. Schematic representation of the nonlinear system

is caused by the Mach-Zehnder modulator (MZM)
used for intensity modulation of the laser light
source [1]. The squaring operation takes place at
the receiver, where the instantaneous light power is
detected by a photo diode.m and ubias are user
controllable system parameters that control drive
level and operation point of the modulator (therefore
m is restricted to positive values),β is a positive



gain factor used for controlling the optical power
on the channel. The clipping operation is required
to avoid driving the modulator over the reversal
points of the cosine-square characteristic curve in
order to stay in the monotonically increasing region
[−π/2, 0] and thus are dependent onm and ubias.
In practical applications, the clipping device would
be placed behind the addition ofubias, directly in
front of the MZM, to allow fixed clipping thresholds
ϑlow = −π/2, ϑhigh = 0. However, these models are
mathematically equivalent and can be translated into
each other by use of the relations

ϑlow = mclow + ubias

ϑhigh = mchigh + ubias. (3)

However, the model in (2) is preferred due to its
more pleasing mathematical representation, which
will be used in the following section.

III. STOCHASTICAL MEASURES OF THE

RECEIVER OUTPUT SIGNAL

The receiver output signalz(t) is a realization of a
stochastic processZ(t), which can be decomposed
into a scaled version of the originally transmitted
signal (corresponding to an SNR loss) and an un-
correlated distortion termD(t) [2],[3]:

Z(t) = αX(t) + D(t). (4)

The scaling factorα will be calculated in the fol-
lowing using these variables, as will be the second
order moment ofZ(t). Hence, the power of the
interference termD(t) can be evaluated.
For calculation ofα, the fact thatD(t) is uncor-
related to X(t) can be employed. For the cross
correlation ofX(t) andZ(t), we find:

rXZ(τ) = E {X(t)Z(t + τ)}
= αE {X(t)X(t + τ)} = αrXX(τ) (5)

Evaluating this equation atτ = 0, we obtain the
relationship

α =
rXZ(0)

rXX(0)
=

rXZ(0)

σ2
X

. (6)

rXZ(0) can be calculated analytically:

rXZ(0) = E {X(t)Z(t)}

=

∞∫

−∞

x(t)β2 cos2(m · c(x(t)) + ubias)pX(x)dx.

(7)

Using the piecewise definition of the overall nonlin-
earity

z(t) =







β2 cos2(m · clow + ubias) x(t) ≤ clow

β2 cos2(m · x(t) + ubias) clow < x(t) < chigh

β2 cos2(m · chigh + ubias) chigh ≤ x(t)

,

(8)
the integral in (7) can be split into three integrals:

rXZ(0) = β2 cos2(m · clow + ubias)
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(9)

After evaluation and simplification, we get
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whereIm {·} stands for the imaginary part of the en-
closed expression. Note that here the complex error
function erf(·) (as e.g. defined in [5]) is employed.
The scaling factorα is obtained by division of (10)
by σ2

X . The overall power at the detector output can
be calculated by means of the second order moment
of Z(t):

E
{

|Z(t)|2
}

=

∞∫

−∞

β4 cos4(m · c(x(t)) + ubias)pX(x)dx.

(11)

Using a similar approach as above, we find

E
{

|Z(t)|2
}

=
1

2



1 + erf(
clow

√

2σ2
X

)





· β4 cos4(m · clow + ubias)

+

chigh∫

clow

β4 cos4(m · x(t) + ubias)pX(x)dx



+
1

2



1 − erf(
chigh

√

2σ2
X

)





· β4 cos4(m · chigh + ubias), (12)

which results in (13), whereRe {·} stands for the
real part of the enclosed expression. Since the power
of the desired (zero-mean) signal can easily be given
asα2σ2

X ,

E
{

|D(t)|2
}

= E
{

|Z(t)|2
}

− α2σ2
X (14)

is the power of the uncorrelated, non zero-mean
distortion term. The meanE {D(t)} of the distortion
term is equal to the mean of the processE {Z(t)},
since X(t) was assumed to be zero-mean. The
momentE {Z(t)} can be calculated using the same
approach as as above in (12), resulting in (15).
Since the OFDM subcarrier at baseband frequency
0 often is left unused for data transmission due to
issues arising from DC offset problems, the power
contained in this offsetE {D(t)} does not contribute
to the distortion of the OFDM signal. Thus it has to
be subtracted for the following considerations.

IV. SIMULATION RESULTS

Figure 2 shows the Signal-to-Interference power
ratio (SIR) α2/(E

{
|D|2

}
− E {Z}2) for a normal-

ized drive levelm · σX in the range[0, π
2
] and an

offset −π
2

≤ ubias ≤ 0. The maximum SIR is
obtained forubias = −π

4
andm tending towards0.

This behaviour is expected, sinceubias = −π
4

sets up
the operation point in the point of maximum linearity

of the cosine-square characteristic. Furthermore, the
smaller the driving level, the lesser the modulator is
driven out of the operation point.

The SIR performance shown above determines
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Fig. 2. Signal-to-Interference power ratio (logarithmic scale)
for different values ofmσX andubias

the error-floor behaviour of a transmission system,
as is shown in fig. 3 for a 32 subcarrier QPSK
transmission system without guard interval in the
back-to-back case with only additive white gaussian
noise (AWGN) of overall powerPn (in the used
bandwidth) being present.

A. Power constraints on the optical channel

Similarly to wireless communications, also in
fiber optic communication systems power constraints
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Fig. 3. BER performance for different values ofubias and
mσX =

π
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apply. Whereas in wireless systems, the transmit
power is limited due to regulatory reasons or e.g.
battery life in mobile applications, the optical power
has to be limited to avoid nonlinear effects in the
fiber, which occur at transmit powers over approxi-
mately 1 mW [1].
The optical power at the output of the Mach-Zehnder
modulator after scaling byβ can be calculated by
means of the second order moment of the scaled
modulator output signalY (t) which has already been
calculated in (15):

Popt = E
{

|Y (t)|2
}

= E {Z(t)}
= β2 E

{
cos2(mc(X(t)) + ubias)

}

︸ ︷︷ ︸

=:P0

. (16)

In order to fulfill a power constraintPopt,max on
the optical channel exactly, the value ofβ has to be
chosen as

β =

√

Popt,max

P0

. (17)

Regarding bit error performance, using such a con-
straint will cause BER curves to be shifted by
20 log10 β dB into negative direction. Figure 4 shows
the value ofβ for different values ofmσX and
ubias. Moving towardsubias = −π/2, the mean of
Y (t) and thus the optical carrier power is reduced,
allowing for an increased signal power. Applying
the power constraint by choice ofβ as in (17) for
Popt,max = σ2

X , the Signal-to-Interference+Noise
Ratio (SINR) was calculated for a noise powerPn =
0.1Popt,max. It is displayed in figure 5. The SINR
is maximum for ubias ≈ −0.89π/2 and mσX ≈
0.29π/2. In this case the corresponding clipping
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Fig. 4. Normalized scaling factorβ for different values of
mσX andubias
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Fig. 5. SINR for a noise powerPn = 0.1Popt,max and varying
values ofmσX andubias

thresholds are

clow =
π

2m

(

−1 − ubias

π/2

)

≈ −0.38σX

chigh = −ubias

m
≈ 3.07σX , (18)

which means that in this operation point, almost
half of the amplitude distribution is clipped, but
the SNR improvement by an increase ofβ com-
pensates for the higher power of the distortion
terms. Figure 6 shows the bit error performance
for the normalized drive levelmσX = 0.29π

2
and

different values ofubias. The bit error curves for an
SNR of Popt,max/Pn = 10dB – corresponding to
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Fig. 6. BER performance for different values ofubias and
mσX = 0.29π

2

the scenario employed in the previous figure – is
magnified in the subplot. While an offsetubias =
−0.9π

2
should show best performance according to

the previous figure, here it is the case forubias =
−0.8π

2
. The SNR region in which the former value

shows better performance is observed to lie below
10 dB. One explanation to this behaviour is that
the interference introduced by nonlinear distortions
does not necessarily follow a Gaussian distribution
and – even more important – has a power spectral
density that partially falls outside the OFDM band
and influences different OFDM subcarriers in a
different way. Analysis of the spectral properties of
the interference is not subject of this work, but will
be done in future publications.

B. Influence of Clipping Thresholds

Given a fixed drive levelm and offset level
ubias, the question of dependence of the system
performance on the clipping thresholds arises.
From a naive point of view, moving the clipping
thresholds away from the reversal points of the
cosine-square characteristic towards the operation
point might improve the system performance,
since the deviation from a linear characteristic
is strongest around the reversal points. On the
other hand, the signal distortions introduced by
clipping are increased. For this reason, the BER
performance for clipping thresholds{ϑlow, ϑhigh} =
{−1, 0} π

2
, {−0.9,−0.1} π

2
. . . {−0.6,−0.4} π

2
has

been simulated for an offsetubias = −0.5π
2
, i.e. in

the linear operation point and a normalized drive
level mσX = 0.3π

2
, which in a power constrained

scenario shows best performance for a target BER
of 10−3. Figure 7 shows that clipping thresholds
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Fig. 7. BER performance for different clipping thresholds for
ubias = −0.5π

2
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{−0.9,−0.1} π
2

cause almost the same performance
as clipping in{−1, 0} π

2
. Using a smaller interval

increases distortions which degrade the BER
performance significantly.

V. CONCLUSIONS

First, a stochastic model for the nonlinarities
present in transmitter and receiver components has
been presented, then the error floor behaviour of
the BER has been predicted on the basis of closed
form expressions for expected Signal-to-Interference
power ratios and verified using Monte-Carlo simula-
tions. The results in [6] presented by our cooperation
partner support the observations made in our inves-
tigations.
In future work, the considerations made in this paper
will be transferred to complex valued systems as re-
quired for e.g. Single Sideband (SSB) transmission.
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