

CARL VON OSSIETZKY UNIVERSITÄT OLDENBURG

4th Joint Meeting of the Acoustical Society of America and the Acoustical Society of Japan December, 1st 2006

A Study on Combining Acoustic Echo Cancellers with Impulse Response Shortening

Stefan Goetze¹, Markus Kallinger², Karl-Dirk Kammeyer¹, Alfred Mertins²

¹Dept. Of Communications Engineering University of Bremen, Germany ²Signal Processing Group University of Oldenburg, Germany

Outline

- Motivation
- Listening Room Compensation / Impulse Response Shortening
- Acoustic Echo Cancellation (AEC)
- Tail Effect for Acoustic Echo Cancellers
- Mutual influences of AEC and LRC
- Simulation Results / Conclusions

Motivation

- Hands-free systems should employ subsystems for Noise Reduction (NR) Acoustic Echo Cancellation (AEC) and Dereverberation / Listening Room Compensation
- Listening Room Compensation / Impulse Response Shortening can increase speech intelligibility but needs an estimate of the RIR
- Acoustic Echo Canceller have to cope with very high order impulse responses

System identification may be insufficient

- Combination of both subsystems: Inner AEC or outer AEC
- What are the mutual influences of the two subsystems?

Listening Room Compensation

- An equalizer precedes the acoustic channel
- Common design method: Least Squares Equalizer $c_{EQ} = H^+d$

Problem: Channel h[k] is needed!

The desired system d[k] is approximated by the overall system of $c_{EQ}[k] * h[k]$

var {H(200..3700 Hz)} = 14.365 var { $C_{\text{EQ}}(200..3700 \text{Hz}) \cdot H(200..3700 \text{Hz})$ } = 1.0379

Impulse Response Shortening (I)

 The goal is not spectral flatness of the overall system but a concentration of the energy at the beginning (desired area d_d).

 $\begin{aligned} \mathbf{d}_d &= \mathsf{diag}\{\mathbf{w}_d\}\mathbf{H}\mathbf{c}_{\mathsf{E}\mathsf{Q}} \\ \mathbf{d}_u &= \mathsf{diag}\{1 - \mathbf{w}_d\}\mathbf{H}\mathbf{c}_{\mathsf{E}\mathsf{Q}} \end{aligned}$

 Maximization the energy of d_d while keeping the energy of d_u constant leads to the impulse response shortener after Melsa:

$$\begin{split} \mathbf{B}_{\mathsf{BP}} \cdot \mathbf{c}_{\mathsf{EQ,opt}} &= \mathbf{A} \cdot \mathbf{c}_{\mathsf{EQ,opt}} \cdot \lambda_{\mathsf{max}} \\ \mathbf{A} &= \mathbf{H}^{H} \mathsf{diag} \left\{ \mathbf{w}_{\mathsf{BP,d}} \right\}^{2} \mathbf{H} \\ \mathbf{B}_{\mathsf{BP}} &= \mathbf{H}_{\mathsf{BP}}^{H} \mathsf{diag} \left\{ \mathbf{w}_{\mathsf{BP,d}} \right\}^{H} \mathsf{diag} \left\{ \mathbf{w}_{\mathsf{BP,d}} \right\} \mathbf{H}_{\mathsf{BP}} \end{split}$$

Impulse Response Shortening (II)

 Post processing by a linear prediction filter can reduce the spectral overshoots.

Tail Effect of Acoustic Echo Compensation (I)

Echo cancellation is done by system identification

- The room impulse response (RIR) h[k] can be split up in two parts
- The first part ($L_{c,AEC}$ samples) can be modelled by the AEC while the *tail* (L_t samples) can not.

CARL VON OSSIETZKY

Tail Effect of Acoustic Echo Compensation (II)

Echo cancellation is done by system identification

A bias is introduced for a non white input signal!

Tail Effect of Acoustic Echo Cancellation (III)

Echo cancellation is done by system identification

A bias is introduced for a non white input signal!

CARL VON OSSIETZKY

- Listening Room Compensation / Room Impulse Response Shortening
- Acoustic Echo Cancellation

CARL VON OSSIETZKY

UNIVERSITÄT

Possible Combinations of AEC and EQ

Two Combinations are possible:

Outer AEC

- AEC has to identify shorter overall system $c_{EQ}[k] * h[k]$.

Inner AEC

 AEC identifies RIR h[k] which can be used for equalizer.

What are the mutual influences?

Influence of the EQ on the AEC

• Evaluation by means of the system misalignment: $D_{dB}[k] = 10 \cdot \log_{10} \frac{||h[k] - c_{AEC}[k]||^2}{||h[k]||^2}$

Evaluation by means of the variance of the overall system:

CARL VON

Conclusion

- Coloration introduced by the Equalizer in front of an AEC leads to less accurate system identification.
- The Impulse Response Shortener with post-processing leads to the best results.
- Tail effect of the AEC leads to less accurate system identification.
- Equalizer needs reliable estimate of the RIR for LRC.

Thank you for your attention!

References

- P.J.W. Melsa, R.C. Younce, and C.E. Rohrs: "Impulse Response Shortening for Discrete Multitone Transceivers", IEEE Trans. On Communications, vol. 44, no. 12, pp. 1662-1672, Dec. 1996
- [2] R.K. Martin, D. Ming, B.L. Evans, and C.R. Johnson Jr.: "Efficient Channel Shortening Equalizer Design", J. on Applied Signal Processing, vol. 13, pp 1279-1290, Dec. 2003
- [3] M. Kallinger, A. Mertins: "Room Impulse Shortening By Channel Shortening Concepts", Proc. Asilomar Conf. on Signals and Systems, Monterey, USA, 2005
- [4] S. Haykin: Adaptive Filter Theory, Prentice Hall, 4th. Edition, 2001
- [5] J. Benesty, D.R. Morgan, and M.M. Sondhi: "A Better Understanding and an Improved Solution to the Specific Problems of Stereophonic Acoustic Echo Cancellation" IEEE Trans. On Speech and Audio Processing, vol. 6, no. 2, pp. 156-165, March 1998

