Channel Coding 2

> Dr.-Ing. Dirk Wübben
> Institute for Telecommunications and High-Frequency Techniques Department of Communications Engineering
> Room: N2300, Phone: 0421/218-62385
> wuebben@ant.uni-bremen.de

Lecture
Tuesday, 08:30-10:00 in N3130
Exercise
Wednesday, 14:00-16:00 in N2420
Dates for exercises will be announced during lectures.

Outline Channel Coding II

- 1. Concatenated Codes
- Serial Concatenation \& Parallel Concatenation (Turbo Codes)
- Iterative Decoding with Soft-In/Soft-Out decoding algorithms
- EXIT-Charts
- BiCM
- LDPC Codes
- 2. Trelliscoded Modulation (TCM)
- Motivation by information theory
- TCM of Ungerböck, pragmatic approach by Viterbi, Multilevel codes
- Distance properties and error rate performance
- Applications (data transmission via modems)
- 3. Adaptive Error Control
- Automatic Repeat Request (ARQ)
- Performance for perfect and disturbed feedback channel
- Hybrid FEC/ARQ schemes

Chapter 1. Concatenated Codes

- Introduction
- Serial and Parallel Concatenation
- Interleaving
- Serial Concatenation
- Direct approach, Product Codes, Choice of Component Codes
- Parallel Concatenation
- Modification of Product Codes, Turbo-Codes, Choice of Component Codes
- Distance Properties and Performance Approximation
- Decoding of Concatenated Codes
- Definition of Soft-Information, L-Algebra, General Approach for Soft-Output Decoding,
- BCJR-Algorithm, Iterative Decoding, General Concept of Iterative Decoding
- EXtrinstic Information Transfer (EXIT)-Charts
- Bitinterleaved Coded Modulation (BiCM)
- Low Density Parity Check (LDPC) Codes

Introduction

- Achieving Shannon's channel capacity is the general goal of coding theory
- Block- and convolutional codes of CC-1 are far away from achieving this limit

Claude E. Shannon

- Decoding effort increases (exponentially) with performance
- Questionable, if Shannon's limit can be achieved by these codes
- Concatenation of Codes
- Forney (1966): proposed combination of simple codes
- Berrou, Glaxieux, Thitimajshima: Turbo-Codes (1993): Clever parallel concatenation of two convolutional codes achieving 0.5 dB loss at $P_{\mathrm{b}}=10^{-5}$ to channel capacity
- Principal Idea:

- Clever concatenation of simple codes in order to generate a total code with high performance and enabling efficient decoding
- Example:
- Convolutional Code with $L_{\mathrm{C}}=9 \quad \rightarrow 2^{8}=256$ states
- 2 Convolutional Codes with $L_{\mathrm{C}}=3 \rightarrow 2 \cdot 2^{2}=8$ states \rightarrow complexity reduction by a factor of 32 repeated decoding (6 iterations) $\rightarrow 6.8=48$ states \rightarrow reduction by a factor of 5

Universität Bremen*

Serial and Parallel Code Concatenation

- Serial Code Concatenation

- Subsequent encoder obtains whole output stream of previous encoder \rightarrow redundancy bits are also encoded
- Parallel Code Concatenation
- Each encoder obtains only information bits
- Parallel-serial converter generates serial data stream
- Example: Turbo Codes

Interleaving

- Interleaver performs permutation of symbol sequence
- Strong impact on performance of concatenated codes
- Also used to split burst errors into single errors for fading channels

- Block interleaver

Column-wise write in, but row-wise read out leads to permutation of symbol sequence
interleaving depth $L_{\mathrm{I}}=5$: neighboring symbols of the input stream have a distance of 5 in the output stream
\rightarrow given by number of columns

- input sequence: $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}$
- output sequence: $x_{0}, \widehat{x_{3}, x_{6}, x_{9}, x_{12}, x_{1}}, x_{4}, x_{7}, x_{10}, x_{13}, x_{2}, x_{5}, x_{8}, x_{11}, x_{14}$

Interleaving

- Assumption: burst errors of length b should be separated
- Aspects of dimensioning block interleaver
- Number of columns
- affects directly the interleaver depth L_{I}

- $L_{\mathrm{I}} \geq b$ is required, so that burst error of length b is broken into single errors by Π^{-1}
- Number of rows
- Example: For a convolutional code with $L_{C}=5$, five successive code words are correlated \rightarrow for $R_{\mathrm{c}}=1 / 2$ ten successive code bits are correlated
- In order to separate these ten bits (by L_{I} to protect them from burst errors), the number of rows should correspond to $L_{\mathrm{C}} / R_{\mathrm{c}}=10$
- Time delay (latency)
- The memory is read out after the whole memory is written Δt = rows \cdot columns $\cdot T_{b}$
- Notice: For duplex speech communication only an overall delay of 125 ms is tolerable
- Example: data rate $9,6 \mathrm{kbit} / \mathrm{s}$ and interleaver size $400 \mathrm{bits} 2 \cdot \Delta t=2 \frac{400}{96001 / \mathrm{s}}=83,3 \mathrm{~ms}$

Interleaving

- Convolutional Interleaver

- Consists of N registers and multiplexer
- Each register stores L symbols more than the previous register
- Principle is similar to block interleaver
- Random Interleaver
- Block interleaver has a regular structure \rightarrow output distance is directly given by input distance \rightarrow leading to bad distance properties for Turbo-Codes
- Random interleavers are constructed as block interleavers where the data positions are determined randomly
- A pseudo-random generator can be utilized for constructing these interleavers

Serial Code Concatenation: Direct Approach

- Concatenation of (3,2,2)-SPC and (4,3,2)-SPC code

\mathbf{u}	\mathbf{c}_{1}	\mathbf{c}_{2}	$w_{H}\left(\mathbf{c}_{2}\right)$
00	000	0000	0
01	011	0110	2
10	101	1010	2
11	110	1100	2

$$
R_{\mathrm{c}}=2 / 4=1 / 2
$$

Concatenation does not automatically

$$
d_{\min }=2
$$ result in a code with larger distance

- Concatenation of (4,3,2)-SPC and (7,4,3)-Hamming code

\mathbf{u}	\mathbf{c}_{1}	\mathbf{c}_{2}	$w_{H}\left(\mathbf{c}_{2}\right)$	\mathbf{c}_{2}	$w_{H}\left(\mathbf{c}_{2}\right)$
000	0000	0000000	0	0000000	0
001	0011	0011001	3	0001111	4
010	0101	0101010	3	0110011	4
011	0110	0110011	4	0111100	4
100	1001	1001100	3	1010101	4
101	1010	1010101	4	1011010	4
110	1100	1100110	4	1100110	4
111	1111	1111111	7	1101001	4

$R_{\mathrm{c}}=3 / 7$
original concatenation:
$d_{\text {min }}=3$
optimized concatenation:
$d_{\text {min }}=4$

Serial Code Concatenation: Product Codes

- Information bits arranged in $\left(k_{\mathrm{V}}, k_{\mathrm{H}}\right)$ matrix u
- Row-wise encoding with systematic $\left(n_{\mathrm{H}}, k_{\mathrm{H}}, d_{\mathrm{H}}\right)$-code C_{H} of rate $k_{\mathrm{H}} / n_{\mathrm{H}}$ \rightarrow each row contains a code word
- Column-wise encoding with systematic ($n_{\mathrm{V}}, k_{\mathrm{V}}, d_{\mathrm{V}}$)-code C_{V} of rate $k_{\mathrm{V}} / n_{\mathrm{V}}$
\rightarrow each column contains a code word
- Entire code rate:

$$
R_{c}=\frac{k_{\mathrm{H}} \cdot k_{\mathrm{V}}}{n_{\mathrm{H}} \cdot n_{\mathrm{V}}}=R_{c, \mathrm{H}} \cdot R_{c, \mathrm{~V}}
$$

- Minimum Hamming distance:

$$
d_{\min }=d_{\min , \mathrm{H}} \cdot d_{\min , \mathrm{V}}
$$

Serial Code Concatenation: Examples of Product Codes

$(12,6,4)$ product code

x_{0}	x_{4}	x_{8}
x_{1}	x_{5}	x_{9}
x_{2}	x_{6}	x_{10}
x_{3}	x_{7}	x_{11}

- Horizontal: $(3,2,2)-$ SPC code
- Vertical: $(4,3,2)-$ SPC code
- Code rate: $1 / 2$
- $d_{\text {min }}=2 \cdot 2=4$
- Correction of 1 error \& detection of 3 errors possible

[^0]$(28,12,6)$ product code

x_{5}	x_{7}	x_{14}	x_{21}
x_{1}	\varkappa_{8}	\varkappa_{15}	\varkappa_{22}
x_{2}	x_{9}	x_{16}	x_{23}
x_{3}	x_{10}	x_{17}	x_{24}
x_{4}	\varkappa_{11}	\varkappa_{18}	\varkappa_{25}
x_{5}	x_{12}	x_{19}	x_{26}
x_{5}	x_{13}	x_{20}	x_{27}

x_{0}	x_{7}	x_{14}	x_{21}
x_{1}	x_{8}	x_{15}	x_{22}
x_{2}	x_{9}	x_{16}	x_{23}
x_{3}	x_{10}	x_{17}	x_{24}
x_{4}	x_{11}	x_{18}	x_{25}
x_{5}	x_{12}	x_{19}	x_{26}
x_{6}	x_{13}	x_{20}	x_{27}

- Horizontal: $(4,3,2)$-SPC code
- Vertical: $(7,4,3)$-Hamming code
- $d_{\text {min }}=2 \cdot 3=6 \rightarrow$ correction of 2 errors possible

Parallel Code Concatenation: Modified Product Codes

- Information bits u row-wise and column-wise encoded with C_{H} and C_{V}, respectively
- Parity check bits of component codes not encoded twice (no checks on checks)
- Entire code rate

$$
\begin{aligned}
R_{c} & =\frac{k_{\mathrm{H}} \cdot k_{\mathrm{V}}}{n_{\mathrm{H}} \cdot n_{\mathrm{V}}-\left(n_{\mathrm{H}}-k_{\mathrm{H}}\right) \cdot\left(n_{\mathrm{V}}-k_{\mathrm{V}}\right)} \\
& =\frac{1}{1 / R_{c, \mathrm{H}}+1 / R_{c, \mathrm{~V}}-1}
\end{aligned}
$$

- Minimum Hamming distance:

$$
d_{\min }=d_{\min , \mathrm{H}}+d_{\min , \mathrm{V}}-1
$$

Parallel Code Concatenation: Examples

modified (11,6,3) product code

x_{0}	x_{4}	x_{8}
x_{1}	x_{5}	x_{9}
x_{2}	x_{6}	x_{10}
x_{3}	x_{7}	

- Horizontal: $(3,2,2)$ SPC code
- Vertical: $(4,3,2)$ SPC code
- Code rate: 6/11
- $d_{\text {min }}=2+2-1=3$
- 1 error correctable
modified $(25,12,4)$ product code

X_{0}	X_{7}	X_{14}	X_{21}
X_{1}	X_{8}	X_{15}	X_{22}
X_{2}	X_{9}	X_{16}	χ_{23}
X_{3}	χ_{10}	X_{17}	X_{24}
X_{4}	X_{11}	X_{18}	
X_{5}	X_{12}	X_{19}	
X_{6}	X_{13}	X_{20}	

- Horizontal: $(4,3,2)$ SPC code
- Vertical: $(7,4,3)$ Hamming code
- $d_{\text {min }}=2+3-1=4 \rightarrow 1$ error correctable

Union Bound on Bit Error Rate for Product Codes

- Product codes using same ($n, k, 3$)-Hamming code
- Only taking into account minimum distance $d_{\min }=3+3-1=5$ \rightarrow results only valid for high signal to noise ratios

Parallel Code Concatenation:

Turbo Codes

General structure with q constituent codes

- Presented in 1993 by Berrou, Glavieaux, Thitimajshima
special case with 2 constituent codes

- Interleaver Π_{1} neglectable
- Information bits generally not punctured
- Code rate:

$$
R_{c}=\frac{1}{1 / R_{c, 1}+1 / R_{c, 2}-1}
$$

Universität Bremen*

Potential of Turbo Codes

- Optimized interleaver of length $256 \times 256=65536$ bits
- For this interleaver, gain of nearly 3 dB over convolutional code with $L_{\mathrm{c}}=9$
- Gap to Shannon's channel capacity only 0.5 dB ($C=0.5$ at $E_{b} / N_{0}=0.19 \mathrm{~dB}$)
- Tremendous performance loss for smaller interleavers
- World record: 0.08 dB gap to Shannon capacity by Stephan ten Brink

Influence of Constituent Codes

- Systematic recursive convolutional encoders employed in turbo codes
- Constituent codes generate only parity bits
- Conventionally codes with small constraint length ($3 \leq L_{c} \leq 5$) and rate $R_{c}=\frac{1}{n}$ (codes of larger rate can be achieved by puncturing)
- Error probability depends on interleaver size L_{π} and minimum input weight $w_{\min }$ of constituent encoders that leads to finite output weight

$$
P_{b} \sim L_{\pi}^{1-w_{\min }}
$$

- Only recursive encoders require at least $w_{\min }=2$ for finite output weight
- Interleaving gain only achievable for recursive encoders due to $P_{b} \sim L_{\pi}^{-1}$
- Nonrecursive encoders with $w_{\min }=1$ do not gain from enlarging interleaver size $\left(P_{b} \sim L_{\pi}^{0}\right)$

> RSC-Encoders are used as constituent codes \rightarrow performance improves with length of interleaver!

Influence of Constituent Codes

- Instead of free distance d_{f} the effective distance $d_{\text {eff }}$ is crucial

$$
d_{\mathrm{eff}}=w_{\min }+2 \cdot c_{\min }
$$

" Interpretation: Turbo codes are systematic codes

- Total weight of code words depends on weight of information bits $w_{\min }$
- $c_{\text {min }}$ denotes minimum weight of parity bits of one encoder for input weight $w_{\text {min }}=2$
- Assuming same constituent codes, minimum weight for $w_{\min }=2$ is given by $d_{\text {eff }}$
- Consequence:
- Suitable constituent codes should maximize parity weight for input weight $w_{\min }=2$
- Aim is achieved if feedback polynomial of constituent encoders is prime
- Shift register generates sequence of maximum length (m-sequence)
\rightarrow may have larger weight than shorter sequences
Feedback polynomial of constituent encoders should be prime!

Example of Turbo Code with 2 Codes $\left(L_{c}=3\right), R_{c}=1 / 2$

$$
\begin{aligned}
& g_{1}=5_{8} \\
& \underline{g}_{2}=7_{8}
\end{aligned}
$$

$$
\mathbf{P}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

(オ) Universität Bremen*

Example of Turbo Code with 2 Codes $\left(L_{c}=3\right), R_{c}=1 / 2$

- Recursive polynomial: $g_{2}(D)=1+D+D^{2}$
- $g_{2}(D)$ is prime

$$
g_{2}(0)=1+0+0=1 \text { and } g_{2}(1)=1+1+1=1
$$

- Shift register achieves sequence of maximum length (m-sequence) with $L=2^{2}-1=3$
- Max dist. $d_{\text {eff }}^{\max }=w_{\text {min }}+2 \cdot(L+1)=2+2 \cdot 4=10$
- $\mathbf{u}=\left[\begin{array}{llll}1 & 0 & 0 & 1\end{array}\right] \rightarrow \mathbf{c}_{1}=\left[\begin{array}{lll}1 & 1 & 1\end{array} 1\right]$
- Recursive polynomial: $g_{1}(D)=1+D^{2}$
- $g_{1}(D)=(1+D)(1+D) \rightarrow$ non-prime
- Shift register generates sequence of length $L=2$
- Max dist. $d_{\mathrm{eff}}^{\max }=w_{\min }+2 \cdot(L+1)=2+2 \cdot 3=8$
- $\mathbf{u}=\left[\begin{array}{lll}1 & 0 & 1\end{array}\right] \rightarrow \mathbf{c}_{1}=\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$

Feedback polynomial $g_{1}(D)$ would lead to degraded performance!

Example of Turbo Code with 2 Codes $\left(L_{c}=5\right), R_{c}=2 / 3$

$$
\underline{g}_{1}=23_{8} \quad g_{2}=35_{8}
$$

(U) Universität Bremen*

LTE Turbo Code with 2 Codes $\left(L_{c}=4\right)$

$$
\underline{g}_{1}=1+D^{2}+D^{3}=13_{8} \quad g_{2}=1+D+D^{3}=15_{8}
$$

そU) Universität Bremen*

Influence of Interleaver

$$
P_{b} \leq \frac{1}{2} \sum_{d} c_{d} \cdot \operatorname{erfc}\left(\sqrt{d \cdot R_{c} \frac{E_{b}}{N_{0}}}\right)
$$

c_{d} : total number of nonzero info bits associated with code sequences of Hamming weight d

- Avoiding output sequences with low Hamming weight at both encoders
- If output \mathbf{c}_{1} of C_{1} has low Hamming weight \rightarrow permutation of input sequence \mathbf{u}_{2} for C_{2} should result in output sequence \mathbf{c}_{2} with high Hamming weight
- Higher total average Hamming weight / Hamming distance d
- Interleaver directly influences minimum distance
- Number of sequences with low weight reduced due to interleaving
- Small coefficients c_{d}
- Even more important than minimum distance that acts only asymptotically
- Randomness of interleaver is important
- Simple block interleavers perform bad due to symmetry
- Pseudo-random interleavers are much better \rightarrow random codes (\rightarrow Shannon)

Distance Properties of Turbo Codes: Definitions

- General IOWEF (Input Output Weight Enumerating Function) of encoder:

$$
A(W, D)=\sum_{w=0}^{k} \sum_{d=0}^{n} A_{w, d} \cdot W^{w} \cdot D^{d}
$$

$A_{v, d}$: number of code words with input weight w and output weight d

- Conditioned IOWEF's (specific input weight w or specific output weight d):

$$
A(w, D)=\sum_{d=0}^{n} A_{w, d} \cdot D^{d} \quad A(W, d)=\sum_{w=0}^{k} A_{w, d} \cdot W^{w}
$$

- Important for parallel concatenation: weight C of parity bits

$$
A(W, C)=\sum_{w} \sum_{c} A_{w, c} \cdot W^{w} \cdot C^{c} \quad \text { with } \quad d=w+c \quad \begin{aligned}
& \text { All encoders have same input weight } w \\
& \text { Encoders generate only parity bits } \\
& \rightarrow \text { consider weight } c \text { of parity bits }
\end{aligned}
$$

- Corresponding conditioned IOWEF:

$$
A(w, C)=\sum_{c} A_{w, c} \cdot C^{c}
$$

Distance Properties of Turbo Codes: Uniform Interleaver

- Problem: concrete interleaver has to be considered for distance spectrum / IOWEF
\rightarrow determination of IOWEF computationally expensive
- Uniform interleaver (UI): theoretic device comprising all possible permutations

- UI provides average distance spectrum (incl. good and bad interleavers)

Distance Properties of Turbo Codes: Results

- Parallel concatenation:
- Both encoders have same input weight w
- Weights c_{1} and c_{2} of encoder outputs are added
- $A_{1}(w, C) \cdot A_{2}(w, C)$ combines output sequences with same input weight w and covers all possible combinations of output sequences (uniform interleaver)
- Denominator achieves averaging w.r.t. number of permutations of w ones in length L_{π}

$$
A^{\mathrm{par}}(w, C)=\frac{A_{1}(w, C) \cdot A_{2}(w, C)}{\binom{L_{\pi}}{w}}=\sum_{c} A_{w, c}^{\mathrm{par}} \cdot C^{c}
$$

$$
c_{d}=\sum_{w+c=d} \frac{w}{L_{\pi}} \cdot A_{w, c}^{\mathrm{par}}
$$

- Serial concatenation:
- Output weight ℓ of outer encoder equals input weight of inner encoder

$$
A^{\text {ser }}(W, D)=\sum_{\ell} \frac{A_{1}(W, \ell) \cdot A_{2}(\ell, D)}{\binom{L_{\pi}}{\ell}}=\sum_{w} \sum_{d} A_{w, d}^{\mathrm{ser}} \cdot W^{w} \cdot D^{d} \quad \Rightarrow \quad c_{d}=\sum_{w} \frac{w}{L_{\pi} \cdot R_{c}^{1}} \cdot A_{w, d}^{\mathrm{ser}}
$$

Distance Properties of Turbo Codes

- Codes
- Turbo Code

$$
\mathbf{g}_{1}=5_{8}, \mathbf{g}_{2}=7_{8}
$$

- Convolutional Code with $L_{c}=9$
- $R_{\mathrm{c}}=1 / 3$
- Observations
- $\mathrm{UI} \rightarrow c_{d}<1$ is possible
- TC has lower d_{f} but coefficients c_{d} are much smaller
\rightarrow effect becomes more obvious with increasing interleaver length L_{π}

Analytical Error Rate Estimation of Turbo Codes

- Observations
- For small SNR the TC outperforms CC significantly
- Gain increases with L_{π}
- For increasing SNR the BER of TC flattens, whereas the curve of CC decreases
- Explanations
- d_{f} dominates BER for large SNR
- For small SNR the number of sequences with specific weight is of larger importance

Universität Bremen*

Decoding of Concatenated Codes

- Definition of Soft-Information
- L-Algebra
- General Approach for Soft-Output Decoding
- Soft-Output Decoding using the Dual Code
- Soft-Output Decoding for (4,3,2)-SPC-Code
- BCJR Algorithm for Convolutional Codes

Decoding of Concatenated Codes

- Optimum Maximum Likelihood Decoding of concatenated codes is too complex
- Constituent codes C_{1} and C_{2} are decoded by separated decoders D_{1} and D_{2}
- Decoders D_{1} and D_{2} are allowed to exchange "information" in to improve their performance
\rightarrow probability of information and/or code bits is of interest
\rightarrow soft output decoding is required!
- What is a useful soft output?
- Assumption: uncoded transmission over AWGN channel $y=x+n$
- BPSK modulation

$$
x=1-2 u \quad \begin{aligned}
& u=0
\end{aligned} \quad \rightarrow \quad x=+1, ~ \begin{aligned}
& u \\
& u=1
\end{aligned} \rightarrow \quad x=-1 .
$$

\oplus	0	1
0	0	1
1	1	0

\cdot	+1	-1
+1	+1	-1
-1	-1	+1

- MAP criterion (Maximum a posteriori) considers unequal distribution of symbols

$$
\operatorname{Pr}\{u=0 \mid y\}_{<}^{\geq} \operatorname{Pr}\{u=1 \mid y\} \Longleftrightarrow \operatorname{Pr}\{x=+1 \mid y\} \underset{<}{>} \operatorname{Pr}\{x=-1 \mid y\}
$$

Decoding of Concatenated Codes

- Conditional Probability $\operatorname{Pr}\{x=+1 \mid y\}=p\{x=+1, y\} / \operatorname{Pr}\{y\}$

$$
\frac{p\{x=+1, y\}}{\operatorname{Pr}\{y\}}>\frac{p\{x=-1, y\}}{\operatorname{Pr}\{y\}} \longrightarrow \frac{p\{x=+1, y\}}{p\{x=-1, y\}}=\frac{p\{y \mid x=+1\}}{p\{y \mid x=-1\}} \cdot \frac{\operatorname{Pr}\{x=+1\}}{\operatorname{Pr}\{x=-1\}}>1
$$

- Log-Likelihood-Ratio (LLR) (or L-values) derived by Hagenauer

$$
\begin{aligned}
L(\hat{x}) & =L(x, y)=L(x \mid y)=\ln \frac{p\{x=+1, y\}}{p\{x=-1, y\}}>0 \\
& =\underbrace{\ln \frac{p\{y \mid x=+1\}}{p\{y \mid x=-1\}}}_{L(y \mid x)}+\underbrace{\ln \frac{\operatorname{Pr}\{x=+1\}}{\operatorname{Pr}\{x=-1\}}}_{L_{a}(x)}=L(y \mid x)+L_{a}(x)
\end{aligned}
$$

Joachim Hagenauer

- Sign $\operatorname{sgn}\{L(\hat{x})\}$ corresponds to hard decision
- Magnitude $|L(\hat{x})|$ indicates reliability of hard decision
- Another possible definition would be (not used)

$$
L(x)=\operatorname{Pr}\{x=+1\}-\operatorname{Pr}\{x=-1\}
$$

Addition of LLRs requires statistically independency of variables!

Log-Likelihood-Ratio

- For an uncoded transmission the LLR consists of two components
- $L(y \mid x)$ depends on channel statistics and therefore on the received signal y
- $L_{a}(x)$ represents a-priori knowledge about symbol x

$$
L_{a}(x)=\ln \frac{\operatorname{Pr}\{x=+1\}}{\operatorname{Pr}\{x=-1\}}
$$

- Symmetric with respect to $(0,5 ; 0)$
- $\operatorname{Pr}\{x=+1\}>0,5$
$\rightarrow+1$ more likely than -1
\rightarrow positive $L_{a}(\mathrm{x})$
- The larger the difference between $\operatorname{Pr}\{x=+1\}$ and $\operatorname{Pr}\{x=-1\}$ the larger $L_{a}(x)$ \rightarrow suitable value for reliability
- $\operatorname{Pr}\{x=+1\}=0,5 \rightarrow L_{a}(x)=0 \rightarrow$ decision would be random

LLR for a Memoryless Channel

- Memoryless channel (AWGN or 1-path fading channel) $y=\alpha x+n$
- Channel information

$$
\begin{aligned}
L(y \mid x) & =\ln \frac{p\{y \mid x=+1\}}{p\{y \mid x=-1\}}=\ln \frac{\exp \left(-\frac{1}{2 \sigma^{2}}\left(y-\alpha \sqrt{E_{s} / T_{s}}\right)^{2}\right)}{\exp \left(-\frac{1}{2 \sigma^{2}}\left(y+\alpha \sqrt{E_{s} / T_{s}}\right)^{2}\right)} \\
& =\frac{1}{2 \sigma^{2}}\left(y+\alpha \sqrt{E_{s} / T_{s}}\right)^{2}-\frac{1}{2 \sigma^{2}}\left(y-\alpha \sqrt{E_{s} / T_{s}}\right)^{2} \\
& =\frac{4 \alpha y \sqrt{E_{s} / T_{s}}}{2 \sigma^{2}}=4 \alpha y \frac{\sqrt{E_{s} / T_{s}}}{N_{0} / T_{s}}=\underbrace{|\alpha|^{2} \frac{E_{s}}{N_{0}}}_{L_{c h}} y^{\prime}
\end{aligned}
$$

with

$$
\sigma^{2}=\frac{N_{0}}{2 T_{s}}
$$

normalized received signal

$$
y^{\prime}=\frac{y}{|\alpha| \sqrt{E_{s} / T_{s}}}
$$

- $L_{c h}=$ reliability of the channel (depends on SNR E_{S} / N_{0} and channel gain $|\alpha|^{2}$)

LLR for a Memoryless Channel

- Reliability of channel: $L_{c h}=4|\alpha|^{2} \frac{E_{s}}{N_{0}}$
- LLR is simply a scaled version of the matched filter \rightarrow motivation for \ln

LLRs for BSC and BEC

- Binary Symmetric Channel (BSC)

$$
L(y \mid x)=\ln \frac{p\{y \mid x=+1\}}{p\{y \mid x=-1\}}=\left\{\begin{array}{ll}
\ln \frac{1-P_{e}}{P_{e}} & \text { for } y=Y_{0}=+1 \\
\ln \frac{P_{e}}{1-P_{e}} & \text { for } y=Y_{1}=-1
\end{array}=y \cdot \ln \frac{1-P_{e}}{P_{e}}\right.
$$

- Binary Erasure Channel (BEC)

$$
L(y \mid x)= \begin{cases}\ln \frac{1-P_{q}}{0} & \text { for } y=Y_{0} \\ \ln \frac{P_{q}}{P_{q}} & \text { for } y=Y_{2}= \\ \ln \frac{0}{1-P_{q}} & \text { for } y=Y_{1}\end{cases}
$$

Relation between LLRs and Probabilities (1)

- Matched filter corresponds to LLR \rightarrow Task: Find arithmetic to perform operation with respect to LLR instead of probabilities \rightarrow L-algebra by Hagenauer
- Basic relation
- Using completeness $(\operatorname{Pr}\{x=+1\}+\operatorname{Pr}\{x=-1\}=1)$ in LLR

$$
\begin{aligned}
& L(\hat{x})=L(x \mid y)=\ln \frac{\operatorname{Pr}\{x=+1 \mid y\}}{\operatorname{Pr}\{x=-1 \mid y\}}=\ln \frac{\operatorname{Pr}\{x=+1 \mid y\}}{1-\operatorname{Pr}\{x=+1 \mid y\}}=\ln \frac{1-\operatorname{Pr}\{x=-1 \mid y\}}{\operatorname{Pr}\{x=-1 \mid y\}} \\
& \Rightarrow \operatorname{Pr}\{x=+1 \mid y\}=\frac{e^{L(\hat{x})}}{1+e^{L(\hat{x})}}=\frac{1}{1+e^{-L(\hat{x})}} \\
& \Rightarrow \operatorname{Pr}\{x=-1 \mid y\}=\frac{1}{1+e^{L(\hat{x})}}
\end{aligned}
$$

- With respect to symbol $x \in\{+1,-1\}$ the general relation holds

$$
\operatorname{Pr}\{x=i \mid y\}=\frac{e^{L(\hat{x}) / 2}}{1+e^{L(\hat{x})}} \cdot e^{i \cdot L(\hat{x}) / 2}=\frac{1}{1+e^{-\operatorname{sgn}(i) \cdot L(\hat{x})}} \quad \text { with } i \in\{-1,+1\}
$$

Relation between LLRs and Probabilities (2)

- Probability of a correct decision
- For $x=+1$ decision is correct, if $L(\hat{x})$ is positive

$$
\operatorname{Pr}\{\hat{x} \text { correct } \mid x=+1\}=\frac{e^{L(\hat{x})}}{1+e^{L(\hat{x})}}=\frac{e^{\mid L(\hat{x}| |}}{1+e^{|L(\hat{x})|}}
$$

- For $x=-1$ decision is correct, if $L(\hat{x})$ is negative

$$
\begin{aligned}
& \operatorname{Pr}\{\hat{x} \text { correct } \mid x=-1\}=\frac{1}{1+e^{L(\hat{x})}}=\frac{1}{1+e^{-|L(\hat{x})|}}=\frac{e^{|L(\hat{x})|}}{1+e^{|L(\hat{x})|}} \\
& \Rightarrow \operatorname{Pr}\{\hat{x} \text { is correct }\}=\frac{e^{\mid L(\hat{x}| |}}{1+e^{|L(\hat{x})|}}
\end{aligned}
$$

- Soft bit: expected value for antipodal tx signal

$$
\lambda=\mathrm{E}\{\hat{x}\}=\sum_{i= \pm 1} i \cdot \operatorname{Pr}\{\hat{x}=i\}=(+1) \frac{e^{L(\hat{x})}}{1+e^{L(\hat{x})}}+(-1) \frac{1}{1+e^{L(\hat{X})}}=\frac{e^{L(\hat{x})}-1}{e^{L(\hat{x})}+1}=\tanh \frac{L(\hat{x})}{2}
$$

$$
\longrightarrow \operatorname{Pr}\{\hat{x}=+1\}=\frac{\lambda+1}{2}
$$

L-Algebra

- Parity bits are generated by modulo-2-sums of certain information bits \rightarrow how can we calculate the L-value of a parity bit? \rightarrow Hagenauer
- Assumption: Single parity check code (SPC) $p=u_{1} \oplus u_{2} \Rightarrow L(p)=$?
- x_{1} and x_{2} are statistically independent

$$
\begin{aligned}
& L(p)=L\left(u_{1} \oplus u_{2}\right)=\ln \frac{\operatorname{Pr}\left\{u_{1} \oplus u_{2}=0\right\}}{\operatorname{Pr}\left\{u_{1} \oplus u_{2}=1\right\}}=\ln \frac{\operatorname{Pr}\left\{x_{1} \cdot x_{2}=+1\right\}}{\operatorname{Pr}\left\{x_{1} \cdot x_{2}=-1\right\}}=L\left(x_{1} \cdot x_{2}\right) \quad \lambda=\tanh \left(\frac{x}{2}\right)=\frac{e^{x}-1}{e^{x}+1} \\
& L\left(x_{1} \cdot x_{2}\right)=\ln \frac{\operatorname{Pr}\left\{x_{1}=+1\right\} \cdot \operatorname{Pr}\left\{x_{2}=+1\right\}+\operatorname{Pr}\left\{x_{1}=-1\right\} \cdot \operatorname{Pr}\left\{x_{2}=-1\right\}}{\operatorname{Pr}\left\{x_{1}=+1\right\} \cdot \operatorname{Pr}\left\{x_{2}=-1\right\}+\operatorname{Pr}\left\{x_{1}=-1\right\} \cdot \operatorname{Pr}\left\{x_{2}=+1\right\}}=\ln \frac{\frac{\operatorname{Pr}\left\{x_{1}=+1\right\}}{\operatorname{Pr}\left\{x_{1}=-1\right\}} \cdot \frac{\operatorname{Pr}\left\{x_{2}=+1\right\}}{\operatorname{Pr}\left\{x_{2}=-1\right\}}+1}{\frac{\operatorname{Pr}\left\{x_{1}=+1\right\}}{\operatorname{Pr}\left\{x_{1}=-1\right\}}+\frac{\operatorname{Pr}\left\{x_{2}=+1\right\}}{\operatorname{Pr}\left\{x_{2}=-1\right\}}}
\end{aligned}
$$

$$
L\left(x_{1} \cdot x_{2}\right)=\ln \frac{e^{L\left(x_{1}\right)} \cdot e^{L\left(x_{2}\right)}+1}{e^{L\left(x_{1}\right)}+e^{L\left(x_{2}\right)}}=\ln \frac{e^{L\left(x_{1}\right)+L\left(x_{2}\right)}+1}{e^{L\left(x_{1}\right)}+e^{L\left(x_{2}\right)}}
$$

boxplus
$=2 \operatorname{artanh}\left[\tanh \left(\frac{L\left(x_{1}\right)}{2}\right) \cdot \tanh \left(\frac{L\left(x_{2}\right)}{2}\right)\right]=2 \operatorname{artanh}\left[\lambda_{1} \cdot \lambda_{2}\right]=L\left(x_{1}\right) \boxplus L\left(x_{2}\right)$
Universität Bremen

L-Algebra

- mod-2-sum of 2 statistically independent random variables:

$$
\begin{aligned}
L\left(u_{1} \oplus u_{2}\right) & =2 \operatorname{artanh}\left[\tanh \left(\frac{L\left(x_{1}\right)}{2}\right) \cdot \tanh \left(\frac{L\left(x_{2}\right)}{2}\right)\right]=2 \operatorname{artanh}\left[\lambda_{1} \cdot \lambda_{2}\right]=L\left(x_{1}\right) \oplus L\left(x_{2}\right) \\
& \approx \operatorname{sgn}\left[L\left(x_{1}\right)\right] \cdot \operatorname{sgn}\left[L\left(x_{2}\right)\right] \cdot \min \left\{\left|L\left(x_{1}\right)\right|,\left|L\left(x_{2}\right)\right|\right\}
\end{aligned}
$$

$$
\begin{aligned}
\xrightarrow{L\left(x_{2}\right)} \xrightarrow[\tanh (x / 2)]{ } \xrightarrow{\lambda_{2}} L\left(u_{1} \oplus \cdots \oplus u_{n}\right) & =2 \operatorname{artanh}\left[\prod_{i=1}^{n} \tanh \left(L\left(x_{i}\right) / 2\right)\right]=\sum_{i=1}^{n} L\left(x_{i}\right) \\
& \approx \bmod -2 \text {-sum of } n \text { variables: }
\end{aligned}
$$

General Approach for Soft-Output Decoding

- For FEC encoded sequence MAP criterion should be fulfilled
- Symbol-by-Symbol MAP Criterion: $L\left(\hat{u}_{i}\right)=\ln \frac{p\left(u_{i}=0, \mathbf{y}\right)}{p\left(u_{i}=1, \mathbf{y}\right)}$
- L-value for estimation of information bit u_{i} given by receive sequence \mathbf{y}
- Joint probability density function $p\left(u_{i}=0 / 1, \mathbf{y}\right)$ not available \rightarrow elementary conversions
- Using the completeness, the code space is split into two subsets

$$
P(a)=\sum_{i} P\left(a, b_{i}\right)
$$

$$
\begin{aligned}
& \Gamma_{i}^{(0)}=\text { contains all } \mathbf{c} \text { with } u_{i}=0 \\
& \Gamma_{i}^{(1)}=\text { contains all } \mathbf{c} \text { with } u_{i}=1
\end{aligned}
$$

$$
p\left(u_{i}=0, \mathbf{y}\right)=\sum_{\mathbf{c} \in \Gamma_{i}^{(0)}} p(\mathbf{c}, \mathbf{y})
$$

$$
p\left(u_{i}=1, \mathbf{y}\right)=\sum_{\mathbf{c \in \Gamma _ { i } ^ { (1) }}} p(\mathbf{c}, \mathbf{y})
$$

$\longrightarrow L\left(\hat{u}_{i}\right)=\ln \frac{\sum_{\mathbf{c} \in \Gamma_{i}^{(0)}} p(\mathbf{c}, \mathbf{y})}{\sum_{\mathbf{c} \in \Gamma_{i}^{(1)}} p(\mathbf{c}, \mathbf{y})}=\ln \frac{\sum_{\mathbf{c} \in \Gamma_{i}^{(0)}} p(\mathbf{y} \mid \mathbf{c}) \cdot \operatorname{Pr}\{\mathbf{c}\}}{\sum_{\mathbf{c} \in \Gamma_{i}^{(1)}} p(\mathbf{y} \mid \mathbf{c}) \cdot \operatorname{Pr}\{\mathbf{c}\}}$
sum over $2^{k} / 2=2^{k-1}$ code words in numerator and in denominator

General Approach for Soft-Output Decoding

- Assuming statistical independency of the y_{j} (transmission over AWGNC)
- Succeeding noise terms n_{j} are independent, but of course not succeeding code bits c_{j} (interdependencies introduced by encoder)!
- $p(\mathbf{y} \mid \mathbf{c})$ represents probability density conditioned on the hypothesis \mathbf{c}
- y_{j} are statistically independent random variables

$$
p(\mathbf{y} \mid \mathbf{c})=\prod_{j=0}^{n-1} p\left(y_{j} \mid c_{j}\right)
$$

$$
L\left(\hat{u}_{i}\right)=\ln \frac{\sum_{\mathbf{c} \in \Gamma_{i}^{(0)}} \prod_{j=0}^{n-1} p\left(y_{j} \mid c_{j}\right) \cdot \operatorname{Pr}\{\mathbf{c}\}}{\sum_{\mathbf{c} \in \Gamma_{i}^{(i)}} \prod_{j=0}^{n-1} p\left(y_{j} \mid c_{j}\right) \cdot \operatorname{Pr}\{\mathbf{c}\}}
$$

- Each codeword \mathbf{c} is uniquely determined by the corresponding info word u (u_{i} are statistically independent)

$$
\operatorname{Pr}\{\mathbf{c}\}=\operatorname{Pr}\{\mathbf{u}\}=\prod_{j=0}^{k-1} \operatorname{Pr}\left\{u_{j}\right\}
$$

Symbol-by-Symbol MAP

$$
L\left(\hat{u}_{i}\right)=\ln \frac{\sum_{\mathbf{c} \in \Gamma_{i}^{(0)}} \prod_{j=0}^{n-1} p\left(y_{j} \mid c_{j}\right) \cdot \prod_{j=0}^{k-1} \operatorname{Pr}\left\{u_{j}\right\}}{\sum_{\mathbf{c} \in \Gamma_{i}^{(i)}} \prod_{j=0}^{n-1} p\left(y_{j} \mid c_{j}\right) \cdot \prod_{j=0}^{k-1} \operatorname{Pr}\left\{u_{j}\right\}}
$$

General Approach for Soft-Output Decoding

- Symbol-by-Symbol MAP for systematic encoders
- For systematic encoder $u_{i}=c_{i}$ holds for $0 \leq i \leq k-1 \rightarrow i$-th term $p\left(y_{i} \mid c_{i}\right)$ is constant in numerator and denominator \rightarrow can be separated together with $P\left(u_{i}\right)$

$$
\begin{aligned}
L\left(\hat{u}_{i}\right) & =\ln \frac{p\left(y_{i} \mid u_{i}=0\right)}{p\left(y_{i} \mid u_{i}=1\right)}+\ln \frac{\operatorname{Pr}\left\{u_{i}=0\right\}}{\operatorname{Pr}\left\{u_{i}=1\right\}}+\ln \frac{\sum_{\substack{c \in \Gamma_{i}^{(0)}}}^{\prod_{\substack{j=0 \\
j \neq i}}^{n-1} p\left(y_{j} \mid c_{j}\right) \cdot \prod_{\substack{j=0 \\
j i}}^{k-1} \operatorname{Pr}\left\{u_{j}\right\}}}{\sum_{\substack{c \in \Gamma_{i}^{(i)}}}^{\prod_{\substack{ \\
j=0 \\
j \neq i}}^{n-1} p\left(y_{j} \mid c_{j}\right) \cdot \prod_{\substack{j=0 \\
j \neq i}}^{k-1} \operatorname{Pr}\left\{u_{j}\right\}}} \begin{aligned}
& =L_{c h} \cdot y_{i}+L_{a}\left(u_{i}\right)+L_{e}\left(u_{i}\right)
\end{aligned}
\end{aligned}
$$

- Soft-Output can be split into 3 statistically independent parts:
- Systematic part $L_{c h} \cdot y_{i}$
- A-priori information $L_{a}\left(u_{i}\right)$

- Extrinsic information $L_{e}\left(u_{i}\right)$: information provided by code bits connected with u_{i}

General Approach for Soft-Output Decoding

- Compact description of extrinsic information
- Calculation of extrinsic information with LLR's:

$$
\sum_{\mathbf{c} \in \Gamma_{i}^{(0)}} \prod_{j=0}^{n-1} \exp \left[-L\left(c_{j} ; y_{j}\right) \cdot c_{j}\right]
$$

$L_{e}\left(\hat{u}_{i}\right)=\ln$

$$
\sum_{\mathbf{c} \in \Gamma_{i}^{(1)}} \prod_{\substack{j=0 \\ j \neq i}}^{n-1} \exp \left[-L\left(c_{j} ; y_{j}\right) \cdot c_{j}\right]
$$

$$
\text { with } L\left(c_{\ell} ; y_{\ell}\right)=\left\{\begin{array}{cc}
L_{c h} \cdot y_{\ell}+L_{a}\left(u_{\ell}\right) & 0 \leq \ell<k \\
L_{c h} \cdot y_{\ell} & k \leq \ell<n
\end{array}\right.
$$

Soft-Output Decoding of Repetition Codes

- Code word $\mathbf{c}=\left[c_{0} c_{1} \cdots c_{n-1}\right]$ contains n repetitions of information word $\mathbf{u}=\left[u_{0}\right]$
- Set of all code words for $n=3$ is given by $\Gamma=\{000,111\}$

$$
\begin{aligned}
& L\left(\hat{u}_{0}\right)=\ln \frac{\sum_{\mathbf{c} \in \Gamma_{0}^{(0)}} \prod_{j=0}^{n-1} p\left(y_{j} \mid c_{j}\right) \cdot \operatorname{Pr}\{\mathbf{c}\}}{\sum_{\mathbf{c} \in \Gamma_{0}^{(1)}} \prod_{j=0}^{n-1} p\left(y_{j} \mid c_{j}\right) \cdot \operatorname{Pr}\{\mathbf{c}\}}=\ln \frac{\prod_{j=0}^{n-1} p\left(y_{j} \mid 0\right) \cdot \operatorname{Pr}\{\mathbf{c}=[000]\}}{\prod_{j=0}^{n-1} p\left(y_{j} \mid 1\right) \cdot \operatorname{Pr}\{\mathbf{c}=[111]\}} \\
& =\ln \frac{p\left(y_{0} \mid 0\right) \cdot p\left(y_{1} \mid 0\right) \cdot p\left(y_{2} \mid 0\right) \cdot \operatorname{Pr}\left\{u_{i}=0\right\}}{p\left(y_{0} \mid 1\right) \cdot p\left(y_{1} \mid 1\right) \cdot p\left(y_{2} \mid 1\right) \cdot \operatorname{Pr}\left\{u_{i}=1\right\}} \\
& =\ln \frac{p\left(y_{0} \mid 0\right)}{p\left(y_{0} \mid 1\right)}+\ln \frac{p\left(y_{1} \mid 0\right)}{p\left(y_{1} \mid 1\right)}+\ln \frac{p\left(y_{2} \mid 0\right)}{p\left(y_{2} \mid 1\right)}+\ln \frac{\operatorname{Pr}\left\{u_{i}=0\right\}}{\operatorname{Pr}\left\{u_{i}=0\right\}} \\
& =L\left(y_{0} \mid c_{0}\right)+L\left(y_{1} \mid c_{1}\right)+L\left(y_{2} \mid c_{2}\right)+L_{a}\left(u_{0}\right)
\end{aligned}
$$

- Corresponds to averaging of LLRs

Soft-Output Decoding using the Dual Code

- Calculation of extrinsic information requires summation over all code words cof the code space Γ
- The $(255,247,3)$ Hamming code contains $2^{247}=2 \cdot 3 \cdot 10^{74}$ code words
- Instead of calculating the LLR over all code words cof the code \mathcal{C}, it is also possible to perform this calculation with respect to the dual code \mathcal{C}^{\perp}
- Beneficial, if the number of parity bits is relatively small
\rightarrow dual code for $(255,247,3)$ Hamming code contains only $2^{8}=256$ code words
- Calculation of extrinsic information with dual code:

$$
L_{e}\left(\hat{u}_{i}\right)=\ln \frac{\sum_{c^{c} \in \Gamma^{\Gamma}} \prod_{\substack{l=0 \\ \ell \neq i}}^{n-1}\left[\tanh \left(\frac{L\left(c_{e} ; y_{e}\right)}{2}\right)\right]^{c_{i}}}{\sum_{c^{\prime} \in \Gamma^{+}}(-1)^{c_{i}} \prod_{\substack{\ell=0 \\ \ell \neq i}}^{n-1}\left[\tanh \left(\frac{L\left(c_{e} ; y_{e}\right)}{2}\right)\right]^{c_{i}^{i}}}
$$

Summation over all 2^{n-k} code words \mathbf{c}^{\prime} of the dual code

Soft-Output Decoding of (4,3,2)-SPC using the Dual Code

- Calculation of extrinsic information requires summation over $2^{3}=8$ code words. Instead, the dual code contains only $2^{n-k}=2$ words $\Gamma^{\perp}=\{0000,1111\}$.
- Calculation of LLR

$$
L\left(\hat{u}_{i}\right)=L_{c h} \cdot y_{i}+\ln \frac{1+\prod_{\substack{\ell=0 \\
\ell i}}^{1-1}\left[\tanh \left(\frac{L\left(c_{\ell} ; y_{\ell}\right)}{2}\right)\right]}{1-\prod_{\substack{\ell=0 \\
\ell \neq i}}^{n-1}\left[\tanh \left(\frac{L\left(c_{\ell} ; y_{\ell}\right)}{2}\right)\right]} \quad \begin{aligned}
& \text { First term in numerator and } \\
& \text { denominator }(\mathbf{c}=0000) \text { is one. }
\end{aligned}
$$

$$
=L_{c h} \cdot y_{i}+2 \operatorname{artanh}\left(\prod_{\substack{\ell=0 \\ \ell \neq i}}^{n-1}\left[\tanh \left(\frac{L\left(c_{c} ; y_{\ell}\right)}{2}\right)\right]\right)
$$

Each $\mathbf{c} \in \Gamma$ fulfills $\mathbf{c c}^{T}=0$, i.e. c_{i} is given by modulo-2-sum of all other code bits c_{j} :

$$
\left.\approx L_{c h} \cdot y_{i}+\min _{\ell \neq i}\left\{\mid L\left(c_{\ell} ; y_{\ell}\right)\right\}\right\} \cdot \prod_{\substack{\ell=0 \\ \ell=i}}^{n-1} \operatorname{sgn}\left[L\left(c_{\ell} ; y_{\ell}\right)\right]
$$

$$
c_{i}=\sum_{j \neq i} c_{j} \longrightarrow L_{e}\left(c_{i}\right)=\sum_{\substack{j=1 \\ j \neq i}}^{n} L\left(x_{j}\right)
$$

Soft-Output Decoding for (4,3,2)-SPC-Code

BCJR Algorithm for Convolutional Codes

" Symbol-by-Symbol MAP Decoding: Bahl, Cocke, Jelinek, Raviv (1972)

$$
L\left(\hat{u}_{i}\right)=\ln \frac{p\left(u_{i}=0, \mathbf{y}\right)}{p\left(u_{i}=1, \mathbf{y}\right)}=\ln \frac{\sum_{\left(s^{\prime}, s\right), u_{i}=0} p\left(s^{\prime}, s, \mathbf{y}\right)}{\sum_{\left(s^{\prime}, s\right), u_{i}=1} p\left(s^{\prime}, s, \mathbf{y}\right)}=\ln \frac{\sum_{\left(s^{\prime}, s\right), u_{i}=0} p\left(s^{\prime}, s, \mathbf{y}_{k<i}, \mathbf{y}_{i}, \mathbf{y}_{k>i}\right)}{\sum_{\left(s^{\prime}, s\right), u_{i}=1} p\left(s^{\prime}, s, \mathbf{y}_{k<i}, \mathbf{y}_{i}, \mathbf{y}_{k>i}\right)}
$$

- Efficient calculation of LLR based on the Trellis diagram (exploiting Markov prop.)

Trellis of a RSC with $L_{c}=3$

$$
\begin{gathered}
u_{i}=1 \\
-u_{i}=0 \\
\mathbf{y}=\left[\mathbf{y}_{1} \mathbf{y}_{2} \ldots \mathbf{y}_{N}\right] \\
\mathbf{y}_{i}=\left[y_{i, 0} y_{i, 1} \ldots y_{i, n-1}\right]
\end{gathered}
$$

BCJR Algorithm for Convolutional Codes

- Splitting up the observations $\mathbf{y}_{k>i}$

$$
p\left(s^{\prime}, s, \mathbf{y}_{k<i}, \mathbf{y}_{i}, \mathbf{y}_{k>i}\right)=p\left(\mathbf{y}_{k>i} \mid s^{\prime}, s, \mathbf{y}_{k<i}, \mathbf{y}_{i}\right) \cdot p\left(s^{\prime}, s, \mathbf{y}_{k<i}, \mathbf{y}_{i}\right)
$$

- Backward probability: Probability of the sequence $\mathbf{y}_{k>i}$, if the trellis is assumed in state s at time instant i

$$
\beta_{i}(s)=p\left(\mathbf{y}_{k>i} \mid s^{\prime}, s, \mathbf{y}_{k<i}, \mathbf{y}_{i}\right)=p\left(\mathbf{y}_{k>i} \mid s\right)
$$

If state s at time instant i is known, the parameter $s^{\prime}, \mathbf{y}_{i}, \mathbf{y}_{k i}$ are not relevant

- Splitting up the observations \mathbf{y}_{i}

$$
p\left(s^{\prime}, s, \mathbf{y}_{k<i}, \mathbf{y}_{i}\right)=p\left(s, \mathbf{y}_{i} \mid s^{\prime}, \mathbf{y}_{k<i}\right) \cdot p\left(s^{\prime}, \mathbf{y}_{k<i}\right)
$$

- Transition probability: Probability of observing \mathbf{y}_{i} under the condition that the transition from s^{\prime} to s takes place at time instant $i \rightarrow \mathbf{y}_{k<i}$ not relevant

$$
\begin{aligned}
\gamma_{i}\left(s^{\prime}, s\right) & =p\left(s, \mathbf{y}_{i} \mid s^{\prime}, \mathbf{y}_{k<i}\right)=p\left(s, \mathbf{y}_{i} \mid s^{\prime}\right) \\
& =\frac{p\left(s^{\prime}, s, \mathbf{y}_{i}\right)}{\operatorname{Pr}\left\{s^{\prime}\right\}}=p\left(\mathbf{y}_{i} \mid s^{\prime}, s\right) \frac{\operatorname{Pr}\left\{s^{\prime}, s\right\}}{\operatorname{Pr}\left\{s^{\prime}\right\}}=p\left(\mathbf{y}_{i} \mid s^{\prime}, s\right) \cdot \operatorname{Pr}\left\{s \mid s^{\prime}\right\}
\end{aligned}
$$

$p\left\{\mathbf{y}_{i}| |^{\prime}, s\right\}$: transition probability of channel
$\operatorname{Pr}\left\{s \mid s^{\prime}\right\}$: a-priori-information

- Possibility to use a-priori knowledge within the decoding process $\rightarrow \operatorname{Pr}\left\{s \mid s^{\prime}\right\} \sim u_{i}$

BCJR Algorithm for Convolutional Codes

- Forward probability: $\alpha_{i-1}\left(s^{\prime}\right)=p\left(s^{\prime}, \mathbf{y}_{k<i}\right)$
- Probability density splits into three terms

Probability of sequence $\mathbf{y}_{k<i}$, if the trellis is assumed in state s, at time instant $i-1$

$$
p\left(s^{\prime}, s, \mathbf{y}_{k<i}, \mathbf{y}_{i}, \mathbf{y}_{k>i}\right)=\alpha_{i-1}\left(s^{\prime}\right) \cdot \gamma_{i}\left(s^{\prime}, s\right) \cdot \beta_{i}(s)
$$

- Compact description of Symbol-by-Symbol MAP

$$
L\left(\hat{u}_{i}\right)=\ln \frac{\sum_{\left(s^{\prime}, s\right), u_{i}=0} p\left(s^{\prime}, s, \mathbf{y}_{k<i}, \mathbf{y}_{i}, \mathbf{y}_{k>i}\right)}{\sum_{\left(s^{\prime}, s\right), u_{i}=1} p\left(s^{\prime}, s, \mathbf{y}_{k<i}, \mathbf{y}_{i}, \mathbf{y}_{k>i}\right)}=\ln \frac{\sum_{\left(s^{\prime}, s\right), u_{i}=0} \alpha_{i-1}\left(s^{\prime}\right) \cdot \gamma_{i}\left(s^{\prime}, s\right) \cdot \beta_{i}(s)}{\sum_{\left(s^{\prime}, s\right), u_{i}=1} \alpha_{i-1}\left(s^{\prime}\right) \cdot \gamma_{i}\left(s^{\prime}, s\right) \cdot \beta_{i}(s)}
$$

- Recursive Calculation
- Forward probability
- Backward probability
- Initialization

$$
\alpha_{0}\left(s^{\prime}\right)= \begin{cases}1 & s^{\prime}=0 \\ 0 & s^{\prime} \neq 0\end{cases}
$$

$$
\alpha_{i}(s)=p\left(s, \mathbf{y}_{k<i+1}\right)=\sum_{s^{\prime}} \gamma_{i}\left(s^{\prime}, s\right) \cdot \alpha_{i-1}\left(s^{\prime}\right)
$$

$$
\beta_{i-1}\left(s^{\prime}\right)=p\left(\mathbf{y}_{k>i-1} \mid s^{\prime}\right)=\sum_{s} \gamma_{i}\left(s^{\prime}, s\right) \cdot \beta_{i}(s)
$$

Terminated code otherwise

$$
\beta_{N}(s)= \begin{cases}1 & s^{\prime}=0 \\ 0 & s^{\prime} \neq 0\end{cases}
$$

$$
\beta_{N}(s)=2^{-m}
$$

BCJR Algorithm for Convolutional Codes

- Symbol-by-Symbol MAP Decoding:

$$
L\left(\hat{u}_{i}\right)=\ln \frac{p\left(u_{i}=0, \mathbf{y}\right)}{p\left(u_{i}=1, \mathbf{y}\right)}=\ln \frac{\sum_{\left(s^{\prime}, s\right), u_{i}=0} \alpha_{i-1}\left(s^{\prime}\right) \cdot \gamma_{i}\left(s^{\prime}, s\right) \cdot \beta_{i}(s)}{\sum_{\left(s^{\prime}, s\right), u_{i}=1} \alpha_{i-1}\left(s^{\prime}\right) \cdot \gamma_{i}\left(s^{\prime}, s\right) \cdot \beta_{i}(s)} \quad-u_{i}=1
$$

【U) Universität Bremen*

Calculation in Logarithmic Domain

- Implementation with respect to probabilities is complicated
\rightarrow numerical problems \rightarrow implementation in the logarithmic domain favorable
- Transition variable $\bar{\gamma}_{i}\left(s^{\prime}, s\right)=\ln \gamma_{i}\left(s^{\prime}, s\right)=\ln p\left(\mathbf{y}_{i} \mid s^{\prime}, s\right)+\ln \operatorname{Pr}\left\{s \mid s^{\prime}\right\}$

$$
=C-\frac{1}{2 \sigma_{N}^{2}}\left\|\mathbf{y}_{i}-\mathbf{x}\left(s^{\prime}, s\right)\right\|^{2}+\ln \operatorname{Pr}\left\{u_{i}=u\left(s^{\prime}, s\right)\right\}
$$

- Forward variable

$$
\bar{\alpha}_{i}(s)=\ln \alpha_{i}(s)=\ln \left(\sum_{s^{\prime}} \gamma_{i}\left(s^{\prime}, s\right) \cdot \alpha_{i-1}\left(s^{\prime}\right)\right)=\ln \left(\sum_{s^{\prime}} \exp \left(\bar{\gamma}_{i}\left(s^{\prime}, s\right)+\bar{\alpha}_{i-1}\left(s^{\prime}\right)\right)\right)
$$

- Backward variable

$$
\bar{\beta}_{i-1}\left(s^{\prime}\right)=\ln \beta_{i-1}\left(s^{\prime}\right)=\ln \left(\sum_{s} \gamma_{i}\left(s^{\prime}, s\right) \cdot \beta_{i}(s)\right)=\ln \left(\sum_{s} \exp \left(\bar{\gamma}_{i}\left(s^{\prime}, s\right)+\bar{\beta}_{i}(s)\right)\right)
$$

- Initialization

$$
\bar{\alpha}_{0}\left(s^{\prime}\right)=\left\{\begin{array}{cc}
0 & s^{\prime}=0 \\
-\infty & s^{\prime} \neq 0
\end{array}\right.
$$

Terminated code

$$
\bar{\beta}_{N}(s)=\left\{\begin{array}{cc}
0 & s^{\prime}=0 \\
-\infty & s^{\prime} \neq 0
\end{array}\right.
$$

Calculation in Logarithmic Domain: Jacobi Logarithm

- In recursion, In of sum of exponents occur

$$
\ln \left(e^{x_{1}}+e^{x_{2}}\right)=\max \left[x_{1}, x_{2}\right]+\ln \left(1+e^{-x_{1}-x_{2}}\right)=\max ^{*}\left[x_{1}, x_{2}\right]
$$

- Proof
- For $x_{1}>x_{2}$

$$
\max ^{*}\left[x_{1}, x_{2}\right]=\ln \left(e^{x_{1}}\left(1+e^{-\left(x_{1}-x_{2}\right)}\right)\right)=\ln \left(e^{x_{1}}\right)+\ln \left(1+e^{-\left(x_{1}-x_{2}\right)}\right)=x_{1}+\ln \left(1+e^{-\left|x_{1}-x_{2}\right|}\right)
$$

- For $x_{1} \leq x_{2}$

$$
\max ^{*}\left[x_{1}, x_{2}\right]=\ln \left(e^{x_{2}}\left(1+e^{-\left(x_{2}-x_{1}\right)}\right)\right)=\ln \left(e^{x_{2}}\right)+\ln \left(1+e^{-\left(x_{2}-x_{1}\right)}\right)=x_{2}+\ln \left(1+e^{-\left|x_{1}-x_{2}\right|}\right)
$$

- Second term has small range between 0 and $\ln 2$
\rightarrow efficiently be implemented by a lookup table w.r.t $\left|x_{1}-x_{2}\right|$

Calculation in Logarithmic Domain: Jacobi Logarithm

- Simplify logarithm of sums $\ln \left(e^{x_{1}}+e^{x_{2}}\right)=\max ^{*}\left[x_{1}, x_{2}\right]=\max \left[x_{1}, x_{2}\right]+\ln \left(1+e^{-\left|x_{1}-x_{2}\right|}\right)$
- Forward variable

$$
\begin{aligned}
\bar{\alpha}_{i}(s) & =\ln \alpha_{i}(s)=\ln \left(\sum_{s^{\prime}} \exp \left(\bar{\gamma}_{i}\left(s^{\prime}, s\right)+\bar{\alpha}_{i-1}\left(s^{\prime}\right)\right)\right) \\
& =\max ^{*}\left[\bar{\gamma}_{i}\left(s_{1}^{\prime}, s\right)+\bar{\alpha}_{i-1}\left(s_{1}^{\prime}\right), \bar{\gamma}_{i}\left(s_{2}^{\prime}, s\right)+\bar{\alpha}_{i-1}\left(s_{2}^{\prime}\right)\right] \\
& =\max _{s^{\prime}}\left[\bar{\gamma}_{i}\left(s^{\prime}, s\right)+\bar{\alpha}_{i-1}\left(s^{\prime}\right)\right]+\underbrace{\ln \left(1+e^{-\left|\Delta_{i}\right|}\right)}
\end{aligned}
$$

- Backward variable
$\bar{\beta}_{i-1}\left(s^{\prime}\right)=\ln \beta_{i-1}\left(s^{\prime}\right)=\max ^{*}\left[\bar{\gamma}_{i}\left(s^{\prime}, s_{1}\right)+\bar{\beta}_{i}\left(s_{1}\right), \bar{\gamma}_{i}\left(s^{\prime}, s_{2}\right)+\bar{\beta}_{i}\left(s_{2}\right)\right]$

$$
=\max _{s}\left[\bar{\gamma}_{i}\left(s^{\prime}, s\right)+\bar{\beta}_{i}(s)\right]+
$$

- Declaration:
- Log-MAP: implementation of BCJR in log-domain with correction term
- Max-Log-MAP: implementation in log-domain without correction term

Iterative Decoding

- General Structure for Parallel Concatenated Codes
- Turbo Decoding for (24,16,3)-Product Code
- Simulation Results
- Turbo Decoding for Serially Concatenated Codes

General Concept for Iterative Decoding

- Parallel Concatenated Codes

Turbo Decoding for $(24,16,3)$ Modified Product Code (1)

u| 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 1 | 0 |
| 0 | BPSK | | |
| 0 | 0 | 0 | 1 |

Vertical extrinsic info serves as horizontal a-priori info

$$
L_{a, 1}^{-}(\widehat{\mathbf{u}})=L_{e, 1}^{\mid}(\widehat{\mathbf{u}})
$$

$$
L_{1}^{\mid}(\widehat{\mathbf{u}})=L_{c h} \cdot \mathbf{y}+L_{e, 1}^{\mid}(\widehat{\mathbf{u}})
$$

-1.3	-1.3	-3.8	-0.6
-0.6	1.3	-1.3	-3.2
0.6	-1.3	1.3	0.6
-0.6	3.2	-1.3	-0.6

-0.7	6.3	-2.5	-3.8
4.5	-3.1	2.5	-3.8
-7.0	1.9	-4.4	8.2
0.7	1.9	6.9	-10.1

\mathbf{x}| -1 | +1 | +1 | -1 | +1 |
| :---: | :---: | :---: | :---: | :---: |
| +1 | -1 | -1 | -1 | -1 |
| -1 | +1 | -1 | +1 | +1 |
| +1 | +1 | +1 | -1 | -1 |
| +1 | -1 | +1 | -1 | |
| | | | | |

LLR	0.6	7.6	1.3	-3.2	6.3
$\text { AWGN }{ }^{L_{c h} \cdot \mathbf{y}}$	5.1	-4.4	3.8	-0.6	-9.5
	-7.6	3.2	-5.7	7.6	1.3
	1.3	-1.3	8.2	-9.5	12.7
	1.9	-5.7	7.6	-7.0	

1. vertical decoding

Turbo Decoding for $(24,16,3)$ Modified Product Code (2)

$L_{c h} \cdot \mathbf{y}+L_{a, 1}^{-}(\widehat{\mathbf{u}})$

-0.7	6.3	-2.5	-3.8
-3.3			
4.5	-3.1	2.5	-3.8
-7.0	1.9	-4.4	-9.2
0.7	1.9	6.9	-10.1
1.9	-5.7	7.6	-7.0

Turbo Decoding for $(24,16,3)$ Modified Product Code (3)

$L_{c h} \mathbf{y}+L_{\mathrm{a}, 2}(\mathbf{u})$				
3.1	6.9	2.1	-2.5	6.3
2.6	-1.9	0.7	1.9	-9.5
-8.9	4.5	-7.0	8.9	1.3
3.2	-0.6	8.9	-10.2	-12.7
1.9	-5.7	7.6	-7.0	

$\hat{\mathbf{u}}_{2}$| 1 | 0 | 0 | 1 |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 1 | 0 |
| x | x | 0 | 1 |

$L_{2}^{-}(\hat{\mathbf{u}}) \quad$| -1.9 | 7.6 | 2.1 | -1.9 |
| :---: | :---: | :---: | :---: |
| 1.5 | -2.1 | -1.4 | 1.4 |
| -7.0 | 3.9 | -6.3 | 1.3 |
| 0 | 0 | 6.9 | 0.6 |

2. vertical decoding
$L_{\mathrm{e}, 2}(\hat{\mathbf{u}})$

-1.9	-0.6	-0.7	1.9
-1.9	0.6	-2.1	-2.5
1.9	-0.6	0.7	-1.9
-1.9	1.9	-0.7	1.9

$L_{c h} \mathbf{y}+L^{-}{ }_{\text {a,2 }}(\mathbf{u})$				
-1.3	7.0	0.6	-1.3	6.
3.2	6.3	1.4	-3.a	-9.5
0.7	-1.3	-1.4	-0.6	1
-7.0	3.9	-6.3	7.0	12.7
1.3	1.3	8.2	3	

$L_{c h} \cdot \mathbf{y}+$
$L_{e, 2}^{-}(\hat{\mathbf{u}})+$
$L_{a, 2}^{-}(\hat{\mathbf{u}})$

Turbo Decoding for $(24,16,3)$ Modified Product Code (4)

$\left.L_{c h} \mathbf{y}+L_{\text {a,3 }}{ }^{\text {(}} \mathbf{u}\right)$				
0.0	8.2	2.6	-3.8	6.3
3.4	-2.7	0.7	1.1	-9.5
-8.9	4.5	-7.0	8.9	1.3
1.9	-1.9	8.2	-8.9	12.7
1.9	-5.7	7.6	-7.0	

3. vertical
decoding
$L_{\mathrm{e}, 3}^{\mid}(\hat{\mathbf{u}})$

-1.9	-1.9	-0.7	1.1
0	1.9	-2.6	-3.8
0	-1.9	0.7	-1.1
0	2.7	-0.7	1.1

$L_{c h} \cdot \mathbf{y}+$
$L_{e, 3}^{-}(\hat{\mathbf{u}})+$
$L_{a, 3}^{-}(\hat{\mathbf{u}})$

Turbo Decoding for Parallel Concatenated Codes

- Both decoders estimate same information word \mathbf{u} and each decoder receives corresponding channel outputs
- Systematic information bits \mathbf{y}_{s} are fed to D_{2} via D_{1} and Π
- Each decoder generates extrinsic information for bit u serving as a priori LLRs for other decoder
- A priori LLRs improve decoders' performance in each iteration as long as they are statistically independent of regular inputs

Simulation Results for Modified Product Codes (7,4,3)-Hamming Codes

- Observations
- Gains decrease with number of iterations
- Same info bits are estimated and correlation of a-priori information increases
- With the larger interleaver length the gains of subsequent iterations are generally larger \rightarrow statistical independence of bits is required

Simulation Results for Modified Product Codes
(15,11,3)-Hamming-Codes

Simulation Results for Modified Product Codes

(31,26,3)-Hamming-Codes

- Observations
- Larger interleaver leads to improved statistic
\rightarrow gains for iteration 3
- For larger SNR the BER flattens
\rightarrow minimum distance dominates error rate for large SNR

Universität Bremen*

Simulation Results for Modified Product Codes

- Hamming codes have $d_{\min }=3$ for all lengths n
- Analyzed product codes have same $d_{\text {min }} \rightarrow$ similar error rates versus E_{s} / N_{0}
- Code rates are different \rightarrow longer product codes are better versus E_{b} / N_{0}

Simulation Results for Turbo Codes $\left(L_{c}=3\right)$

- Gains decrease with number of iterations
- Increase of interleaver size leads to reduced BER

Simulation Results for Turbo Codes $\left(L_{c}=3\right)$

- Usage of random interleaver leads to significant performance improvements in comparison to block interleaver

- Random interleaver (RIL) achieves larger gains in comparison to block interleaver (BIL)

Turbo Decoding for Serially Concatenated Codes

- Outer decoder receives information only from inner decoder
- Outer decoder delivers estimates on information bits u as well as extrinsic LLRs of code bits \mathbf{c}_{1} being information bits of inner code C_{2}
- Extrinsic LLRs of code bits \mathbf{c}_{1} serve as a priori LLRs for inner code C_{2}

Universität Bremen*

Comparison of Serial and Parallel Concatenation

 orbemen

Repeat Accumulate Code by ten Brink

- Approximately 100 decoding iterations are needed
- Half-rate outer repetition encoder and rate-one inner recursive convolutional encoder

Repeat Accumulate Code by Stephan ten Brink

EXtrinsic Information Transfer Chart

(EXIT-Charts)

Stephan ten Brinn

Mutual Information for Turbo Decoder

- Parallel Concatenation

Mutual Information for Single Decoder

General Concept of Iterative „Turbo" Decoding

- BER curve shows three different regions
- At low SNR the iterative decoding performs worse than uncoded transmission
- At low to medium SNR the iterative decoding is extremely effective \rightarrow waterfall region
- At high SNR the decoding converges already in few iterations \rightarrow error floor
- How to understand this varying behavior?
- Extrinsic information is exchanged between decoders
- Analysis of iterative process by semi-analytic approach
- Determine analytically mutual information $I\left(u ; L_{a}(u)\right)$ between information bits and a-priori input of decoder
- Determine by simulation mutual information $I\left(u ; L_{e}(u)\right)$ between information bits and extrinsic output of decoder for specific a-priori information at input
- Draw relationship between both mutual information's
- Combine diagrams of both contributing decoders into one chart:
\rightarrow EXIT chart: EXtrinsic Information Transfer chart

Distribution of Extrinsic Information

- Investigation of extrinsic decoder output $L_{e}\left(\hat{u}_{i}\right)=L\left(\hat{u}_{i}\right)-L_{c h} \cdot y_{i}-L_{a}\left(u_{i}\right)$
- Example: [7,5]-RSC at $E_{b} / N_{0}=0, \ldots, 2 \mathrm{~dB}$

$$
p_{e}\left(\xi \mid x_{i}=+1\right)
$$

- PDF of extrinsic estimate is given for $x_{i}=+1$ and $x_{i}=-1$ separately
- Extrinsic information is nearly Gaussian distributed
- With increasing SNR
- the mean's absolute value is increased

- the variance is increased

Iterative Decoding: With increasing number of iterations the extrinsic information approaches a Gaussian distribution

Analytical Model for the A-Priori Information

- Extrinsic information of decoder 1 becomes a-priori-information of decoder 2 and vice versa
- For EXIT analysis the a-priori information $A=L_{a}$ is modeled as $A=\mu_{A} \cdot x+n_{A}$
- Gaussian random variable n_{A} of zero mean and variance σ_{A}^{2} is added to the value x of the transmitted systematic bit multiplied by $\mu_{A}=\frac{1}{2} \sigma_{A}^{2}$

$$
p_{A}\left(\xi \mid x_{i}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{A}} \exp \left(-\frac{\left(\xi-\frac{\sigma_{A}^{2}}{2} \cdot x_{i}\right)^{2}}{2 \sigma_{A}^{2}}\right)
$$

- Normalization of a-priori information with $\frac{1}{2} \sigma_{A}^{2}$
- With increasing variance the probability functions are more separated and do not overlap anymore

Motivation for Modeling A-Priori Information

- LLR for uncoded transmission over AWGNC is given by

$$
y=x+n \sim \mathcal{N}\left(\pm 1, \sigma_{n}^{2}\right)
$$

$$
\begin{array}{ll}
L(y \mid x)=\ln \frac{p\{y \mid x=+1\}}{p\{y \mid x=-1\}}=4 \underbrace{\frac{E_{s}}{N_{0}}}_{L_{c h}} y=L_{c h} \cdot y=L_{c h} \cdot(x+n) \text { with } & L_{c h}=4 \frac{E_{s}}{N_{0}}=4 \frac{1}{2 \sigma_{n}^{2}}=\frac{2}{\sigma_{n}^{2}} \\
\Rightarrow L(y \mid x)=\frac{2}{\sigma_{n}^{2}} \cdot x+\frac{2}{\sigma_{n}^{2}} \cdot n & \text { and } \\
& \sigma_{n}^{2}=\frac{N_{0}}{2 T_{s}} \quad \sigma_{x}^{2}=\frac{E_{s}}{T_{s}}=1
\end{array}
$$

- LLR is Gaussian distributed with mean μ_{A} and variance $\sigma_{A}{ }^{2}$

$$
\mu_{A}=E\left\{L(y \mid x=i)=\frac{2}{\sigma_{n}^{2}} \cdot i \quad \sigma_{A}^{2}=E\left\{\left(\frac{2}{\sigma_{n}^{2}} \cdot n\right)^{2}\right\}=\left(\frac{2}{\sigma_{n}^{2}}\right)^{2} \cdot \sigma_{n}^{2}=\frac{4}{\sigma_{n}^{2}}\right.
$$

- The mean's absolute value equals the half of the variance
- Model for a-priori LLR

$$
A=L_{a}=\mu_{A} \cdot x+n_{A}
$$

$$
\Rightarrow A \sim \mathcal{N}\left(\pm \frac{1}{2} \sigma_{A}^{2}, \sigma_{A}^{2}\right)=\mathcal{N}\left(\pm \frac{2}{\sigma_{n}^{2}}, \frac{4}{\sigma_{n}^{2}}\right)
$$

Mutual Information of A-Priori Information and Info Bits

- Mutual information between systematic bits and a-priori LLR

$$
\begin{aligned}
I_{A}\left(\sigma_{A}\right) & =I(X ; A)=\frac{1}{2} \sum_{x_{i}=\{+1,-1\}} \int_{-\infty}^{\infty} p_{A}\left(\xi \mid x_{i}\right) \log _{2} \frac{2 p_{A}\left(\xi \mid x_{i}\right)}{p_{A}\left(\xi \mid x_{i}=-1\right)+p_{A}\left(\xi \mid x_{i}=+1\right)} d \xi \\
& =1-\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi} \sigma_{A}} \exp \left(-\frac{1}{2 \sigma_{A}^{2}}\left(\xi-\frac{1}{2} \sigma_{A}^{2}\right)^{2}\right) \log _{2}\left(1+e^{-\xi}\right) d \xi=1-E\left\{\log _{2}\left(1+e^{-\xi}\right)\right\}=J\left(\sigma_{A}\right)
\end{aligned}
$$

- $0 \leq I_{A} \leq 1$
- Integral has to be solved numerically
- $J\left(\sigma_{A}\right)$ is monotonically increasing in σ_{A}
\rightarrow has a unique inverse function $\sigma_{A}=J^{-1}\left(I_{A}\right)$
- Close approximation for J-function

$$
J\left(\sigma_{A}\right)=I_{A}\left(\sigma_{A}\right) \approx\left(1-2^{-0.3073_{A}^{20.0 .8955}}\right)^{1.1064}
$$

and its inverse

$$
\sigma_{A} \approx J^{-1}\left(I_{A}\right)=\left(-\frac{1}{0.3073} \log 2\left(1-I_{A}^{1 / 1.1064}\right)\right)^{\frac{1}{20.9935}}
$$

Mutual Information of Extrinsic Information and Info Bits

- Mutual information between systematic bits and extrinsic LLR

$$
I_{E}=I(X ; E)=\frac{1}{2} \sum_{\left.x_{i=1}=1,-1\right\}} \int_{-\infty}^{\infty} p_{E}\left(\xi \mid x_{i}\right) \log _{2} \frac{2 p_{E}\left(\xi \mid x_{i}\right)}{p_{E}\left(\xi \mid x_{i}=-1\right)+p_{E}\left(\xi \mid x_{i}=+1\right)} d \xi
$$

- $0 \leq I_{E} \leq 1$
- Semi analytical approach to determine the dependency of mutual information at decoder input and output
- Perform encoding for a random information sequence $\mathbf{u} \rightarrow \mathbf{c}=f(\mathbf{u})$ and $\mathbf{x}=1-2 \mathbf{c}$
- Transmit BPSK signals over AWGN channel
$\mathbf{y}=\mathbf{x}+\mathbf{n}$
- For given I_{A} determine σ_{A} using the inverse J-function $\sigma_{\mathrm{A}}=J^{-1}\left(I_{A}\right)$
- Model a-priori information using analytical model: $\quad \mathbf{A}=\mu_{A} \mathbf{x}+\mathbf{n}_{A}$
- Perform decoding of noisy receive signal y using a-priori information A
- Determine mutual information I_{E} for extrinsic information using histogram for approximating pdf $p_{E}\left(\xi \mid x_{i}\right)$
\rightarrow Transfer characteristic shows dependency of I_{E} and $I_{A} \quad I_{E}=\operatorname{Tr}\left(I_{A}, E_{b} / N_{0}\right)$

Measurement of the Mutual Information

- By application of ergodic theorem (expectation is replaced by time average), the mutual information can be measured for large number N of samples

$$
I(L ; X)=1-E\left\{\log _{2}\left(1+e^{-L}\right)\right\} \approx 1-\frac{1}{N} \sum_{n=1}^{N} \log _{2}\left(1+e^{-x_{n} \cdot L_{n}}\right)
$$

- Measurement setup

Dependency of Mutual Information at Decoder Input and Output

- Transfer characteristic for $\left(37,23_{r}\right)_{8}$ - RSC code
- Decoder processes $\mathrm{L}(y \mid x)$ and $\mathrm{L}_{a}(x)$
- Observations
- I_{E} increases with growing SNR and I_{A}
- $I_{A}=0 \rightarrow$ no a-priori information available
- $I_{A}=1 \rightarrow$ perfect a-priori
$\rightarrow I_{E}$ is reliable regardless of SNR
- For high SNR, nearly no apriori information is required for good decoding results

Behavior of different Convolutional Codes

Serial concatenation: Outer decoder gets only a-priori information of inner decoder
\rightarrow Transfer function of outer decoder is independent of SNR

- Transfer characteristic if only a-priori information is provided to the decoder (c.f. serial concatenation)
- Weak codes better for low a-priori information
- Strong codes better for high a-priori information
- Point of intersection for all convolutional codes close to $(0.5,0.5)$
(explanation for this behavior unknown!)

Comparison of MAP and Max-Log-MAP

$$
\xrightarrow[L_{\mathrm{ch}} y]{L_{\mathrm{a}}} \xrightarrow[\text { Dec. }]{\longrightarrow}
$$

- High channel SNR leads to high extrinsic information
- Large a-priori information can compensate bad channel conditions
- Max-Log-MAP decoder performs nearly as good as optimal MAP decoder

Universität Bremen*

EXtrinsic Information Transfer (EXIT) Charts

- Extrinsic information provided by one decoder is used as a-priori information for other decoder

- For EXIT charts the transfer function of both constituent codes are drawn into one diagram with exchanging the abscissa and ordinate for the second code
- Assumptions
- A large interleaver is assumed to assure statistical independence of I_{A} and I_{E}
- For inner decoders in a serial concatenated scheme and for parallel concatenated schemes the input parameters are L_{ch} and I_{A}
- For outer decoders in a serial concatenation only $I_{A}{ }^{\text {(outer) }}$ appears as input which is taken form the interleaved signal $I_{E}{ }^{\text {(inner) }}$
(Transfer function of outer decoder is independent of SNR)

EXIT Charts for Serial Concatenation

pinch-off SNR: minimum SNR for convergence of turbo decoder

$-E_{\mathrm{b}} / N_{0}=-1.0 \mathrm{~dB}$
$-E_{\mathrm{b}} / N_{0}=0.0 \mathrm{~dB}$
$-E_{\mathrm{b}} / N_{0}=1.0 \mathrm{~dB}$
$-E_{\mathrm{b}} / N_{0}=1.2 \mathrm{~dB}$
$-E_{\mathrm{b}} / N_{0}=2.0 \mathrm{~dB}$
$-E_{\mathrm{b}} / N_{0}=3.0 \mathrm{~dB}$

- outer decoder
- Outer non-recursive convolutional encoder $(15,13)_{8}, R_{c}=3 / 4$
- Inner recursive convolutional encoder $\left(13,15_{r}\right)_{8}, R_{c}=2 / 3$

EXIT Charts for Serial Concatenation

- Outer non-recursive convolutional encoder $(15,13){ }_{8}, R_{c}=3 / 4$
- Inner recursive convolutional encoder $\left(13,15_{r}\right)_{8}, R_{c}=2 / 3$

EXtrinsic Information Transfer (EXIT) Charts

EXtrinsic Information Transfer (EXIT) Charts

- Determining pinch-off SNR: minimum SNR for which convergence is maintained
$\bar{I}\left(u ; L_{e}^{1}(u)\right)=\bar{I}\left(u ; L_{a}^{2}(u)\right)$

Code Design for Half-Rate Repeat-Accumulate Code

Signal-to-Noise ratio

$$
10 \log _{10}\left(\frac{E_{\mathrm{s}}}{N_{0}}\right)=0.5 \mathrm{~dB}
$$

Outer repetition code

$$
R_{\mathrm{c}}=1 / 2
$$

Inner recursive convolutional encoder

$$
\begin{aligned}
& g_{1}=1_{8}, g_{2}=7_{8} / 15_{8} \\
& R_{\mathrm{c}}=1
\end{aligned}
$$

Bitinterleaved Coded Modulation

- General Structure for Serially Concatenated Blocks
- Calculation of LLRs
- Simulation Results

Bit-Interleaved Coded Modulation (BICM)

- Coded transmission with higher order modulation:
- Binary vector of length m is mapped to one of 2^{m} symbols of the alphabet \mathbb{X}
- Usually Gray mapping employed $x \in \mathbb{X} \rightarrow$ minimizes bit error probability without channel coding
- Good properties regarding the capacity of a BICM system
- Interpretation as serially concatenated system
- Insertion of interleaver between encoder and mapper leads to pseudo random mapping of bits onto specific levels and is crucial for iterative turbo detection
- Iterative detection and decoding: demapper and decoder exchange extrinsic information
- How to perform turbo detection / decoding?
- Are there better mapping strategies than Gray mapping?

Soft-Output Demapping

- LLR for each of the m bits (for one specific time instant k):

$$
\begin{aligned}
L^{\operatorname{dem}}\left(\tilde{c}_{\mu}\right)= & L\left(\tilde{c}_{\mu} \mid y\right)=\ln \frac{p\left(y, \tilde{c}_{\mu}=0\right)}{p\left(y, \tilde{c}_{\mu}=1\right)}=\ln \frac{\sum_{\operatorname{c\in GF}(2)^{m}, c_{\mu}=0} p(y \mid \mathbf{c}) \cdot \operatorname{Pr}\{\mathbf{c}\}}{\sum_{\mathbf{c} \in \mathrm{GF}(2)^{m}, c_{\mu}=1} p(y \mid \mathbf{c}) \cdot \operatorname{Pr}\{\mathbf{c}\}} \\
= & \ln \frac{\sum_{x \in \mathbb{X}, c_{\mu}=0} p(y \mid x) \cdot \operatorname{Pr}\{x\}}{\sum_{x \in \mathbb{X}, c_{\mu}=1} p(y \mid x) \cdot \operatorname{Pr}\{x\}}=\ln \frac{\sum_{x \in \mathbb{X}_{\mu}^{0}} \exp \left(-\frac{|y-x|^{2}}{\sigma_{n}^{2}}\right) \cdot \prod_{v=1}^{m} \operatorname{Pr}\left\{c_{v}(x)\right\}}{\sum_{x \in \mathbb{X}_{\mu}^{1}} \exp \left(-\frac{|y-x|^{2}}{\sigma_{n}^{2}}\right) \cdot \prod_{v=1}^{m} \operatorname{Pr}\left\{c_{v}(x)\right\}}
\end{aligned}
$$

- A priori information $L_{a}\left(\tilde{c}_{v}\right)$ provided by decoder

$$
\prod_{v=1}^{m} \operatorname{Pr}\left\{c_{v}(x)\right\}=\prod_{v=1}^{m} \frac{e^{-c_{v}(x) L_{a}\left(\tilde{c}_{v}\right)}}{1+e^{-L_{a}\left(\tilde{c}_{v}\right)}}
$$

Soft-Output Demapping

- Denominator of a priori information cancels when inserted into $L^{\mathrm{dem}}\left(\tilde{c}_{\mu}\right)$
- Intrinsic information $L_{i}^{\mathrm{dem}}\left(\tilde{c}_{v}\right)$ is independent of a priori information $L_{a}\left(\tilde{c}_{v}\right)$

$$
\begin{aligned}
L_{i}^{\operatorname{dem}}\left(\tilde{c}_{\mu}\right) & =L^{\operatorname{dem}}\left(\tilde{c}_{\mu}\right)-L_{a}\left(\tilde{c}_{\mu}\right) \\
& =\ln \frac{\sum_{x \in \mathbb{X}_{\mu}^{0}} \exp \left(-\frac{|y-x|^{2}}{\sigma_{n}^{2}}\right) \cdot \prod_{v=1, v \neq \mu}^{m} e^{-c_{v}(x) L_{a}\left(c_{v}\right)}}{\sum_{x \in \mathbb{X}_{\mu}^{1}} \exp \left(-\frac{|y-x|^{2}}{\sigma_{n}^{2}}\right) \cdot \prod_{v=1, v \neq \mu}^{m} e^{-c_{v}(x) L_{a}\left(c_{v}\right)}}
\end{aligned}
$$

Soft-Output Demapping for 16-QAM

$$
\frac{\sum_{x \in \mathbb{X}_{1}^{2}} \exp \left(-\frac{1}{\sigma_{n}^{2}}|y-x|^{2}\right) \cdot \prod_{v=1}^{m} \operatorname{Pr}\left\{c_{v}(x)\right\}}{\sum_{x \in \mathbb{X}_{1}^{1}} \exp \left(-\frac{1}{\sigma_{n}^{2}}|y-x|^{2}\right) \cdot \prod_{v=1}^{m} \operatorname{Pr}\left\{c_{v}(x)\right\}}
$$

System Model for BICM

Selected Bit-Mappings for 8-PSK

そUJ Universität Bremen*

EXtrinsic Information Transfer Charts

- Demapper: a priori information
\rightarrow mutual information $I\left(\mathrm{c}, \mathrm{L}_{\mathrm{a}}^{\text {dem }}\right)$
- Detection and decoding only once
- Gray is best
- Iterative detection and decoding
- Anti-Gray is best

Bit Error Rates

- Simulation parameters
- BCH $(8,4)$
- 8-PSK
- Alamouti scheme
- 360 coded bits per frame
- Independent Rayleigh fading
- Channel const. for 24 symbols
- First detection and decoding
- Gray good, Anti-Gray bad
$>$ After four iterations
- Anti-Gray is best
\Rightarrow Same results as predicted by EXIT charts

Low Density Parity Check Codes

- Definition and properties of LDPC codes
- Iterative decoding
- Simulation results

LDPC Codes

- Low Density Parity Check Codes
- Invented by Robert G. Gallager in his PhD thesis, 1963
- Re-invented by David J.C. Kay in 1999
- LDPC codes are linear block codes with sparse parity check matrix \mathbf{H} \rightarrow contains relatively few ' 1 ' spread among many ' 0 ' (for binary codes)
- Iteratively decoded on a factor graph of the check matrix
- Advantages
- Good codes
- Low decoding complexity

Introduction

- Recall: For every linear binary (n, k) code \mathcal{C} with code rate $R_{c}=k / n$
- There is a generator matrix $\mathbf{G} \in \mathrm{GF}(q)^{k \times n}$ such that code words $\mathbf{x} \in \operatorname{GF}(q)^{n}$ and info words $\mathbf{u} \in \mathrm{GF}(q)^{k}$ are related by

$$
\mathbf{x}=\mathbf{u} \cdot \mathbf{G}
$$

- There is a parity-check matrix $\mathbf{H} \in \mathrm{GF}(q)^{m \times n}$ of $\operatorname{rank}\{\mathbf{H}\}=n-k$, such that

$$
\mathbf{x} \cdot \mathbf{H}^{T}=\mathbf{0}
$$

- Relation of generator and parity check matrix

$$
\mathbf{G} \cdot \mathbf{H}^{T}=\mathbf{0}
$$

Regular LDPC-Codes

- Definition: A regular $\left(d_{v}, d_{c}\right)$-LDPC code of length n is defined by a parity-check matrix $\mathbf{H} \in \mathrm{GF}(q)^{m \times n}$ with d_{v} ones in each column and d_{c} ones in each row. The dimension of the code (info word length) is $k=n-\operatorname{rank}\{\mathbf{H}\}$
- Example:
- $n=8, m=6, k=n-\operatorname{rank}\{\mathbf{H}\}=4(!), R_{\mathrm{C}}=1 / 2$
- $d_{v}=3, d_{c}=4$

$$
\mathbf{H}=\left[\begin{array}{llllllll}
1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

Regular LDPC-Codes

- Design Rate: The true rate R_{C} and the design rate R_{d} are defined as

$$
R_{C}=\frac{k}{n} \quad \text { and } \quad R_{d}=1-\frac{d_{v}}{d_{c}} \quad \text { with } \quad R_{C} \geq R_{d}
$$

- Proof: The number of ones in the check matrix $m \cdot d_{c}=n \cdot d_{v}$. Some parity check equations may be redundant, i.e., $m \geq n-k$, and thus $\frac{k}{n}=1-\frac{n-k}{n} \geq 1-\frac{m}{n}=1-\frac{d_{v}}{d_{c}}$
- The check matrices can be constructed randomly or deterministic
- Encoding
- LDPC codes are usually systematically encoded, i.e., by a systematic generator matrix $\mathbf{G}=\left[\mathbf{I}_{k \times k} \mid \mathbf{P}_{k \times n-k}\right]$
- The matrix \mathbf{P} can be found by transforming \mathbf{H} into another check matrix of the code, that has the form

$$
\mathbf{H}^{\prime}=\left[-\mathbf{P}_{k \times n-k}^{T} \mid \mathbf{I}_{n-k \times n-k}\right]
$$

Factor Graph

- A factor graph of a code is a graphical representation of the code constraints defined by a parity-check matrix of this code

$$
\mathbf{x} \cdot \mathbf{H}^{T}=\mathbf{0}
$$

- The factor graph is a bipartite graph with
- a variable node for each code symbol,
- a check node for each check equation,
- an edge between a variable node and a check node if the code symbol participates in the check equation
- Notice that each edge corresponds to one ' 1 ' in the check matrix.
th

Factor Graph

- Example:

$$
\mathbf{x} \cdot \mathbf{H}^{T}=\left[\begin{array}{llll}
x_{0} & x_{1} & \ldots & x_{7}
\end{array}\right]\left[\begin{array}{llllllll}
1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 1
\end{array}\right]^{T}=\mathbf{0}
$$

$x_{0} \oplus x_{3} \oplus x_{4} \oplus x_{5}=0 \quad c h k_{0}$
$x_{0} \oplus x_{2} \oplus x_{4} \oplus x_{5}=0 \quad c h k_{1}$
$x_{0} \oplus x_{2} \oplus x_{3} \oplus x_{5}=0 \quad c h k_{2}$
$x_{1} \oplus x_{3} \oplus x_{6} \oplus x_{7}=0 \quad$ chk $_{3}$
$x_{1} \oplus x_{4} \oplus x_{6} \oplus x_{7}=0 \quad c h k_{4}$
$x_{1} \oplus x_{2} \oplus x_{6} \oplus x_{7}=0 \quad \operatorname{ch} k_{5}$

$n=8$ columns (code word length)
$n-k=6$ parity check equations
Each check node represents one row of parity check matrix

Decoding with the Sum-Product Algorithm

- Similar to Turbo Decoding, extrinsic information is exchanged
- Check nodes „collect" extrinsic information from the connected variable nodes
- Variable nodes „collect" extrinsic information from the connected check nodes

- Iterative decoding procedure

$$
\text { Stop if } \mathbf{x} \cdot \mathbf{H}^{T}=\mathbf{0}
$$

\rightarrow Also called „message passing" or "believe propagation"

Decoding with the Sum-Product Algorithm

- First check equation $x_{0} \oplus x_{3} \oplus x_{4} \oplus x_{5}=0$
- Is the check equation fulfilled? ch $k_{0}=L\left(x_{0}\right) \boxplus L\left(x_{3}\right) \boxplus L\left(x_{4}\right) \boxplus L\left(x_{5}\right)$
- Extrinsic information

$$
x_{0}=x_{3} \oplus x_{4} \oplus x_{5} \longrightarrow L_{e}^{0}\left(x_{0}\right)=L\left(x_{3}\right) \boxplus L\left(x_{4}\right) \boxplus L\left(x_{5}\right)
$$

$L\left(x_{0}\right)=L_{\text {ch }} y_{0}$	χ_{0}
$L\left(x_{1}\right)=L_{\text {ch }} y_{1}$	x_{1}
$L\left(x_{2}\right)=L_{\text {ch }} y_{2}$	x_{2}
$L\left(x_{3}\right)=L_{\text {ch }} y_{3}$	$\mathrm{x}_{3} \bigcirc \sim \square \mathrm{chk}_{2}$
$L\left(x_{4}\right)=L_{\text {ch }} y_{4}$	$\mathrm{x}_{4} \bigcirc \longrightarrow \square \mathrm{chk}_{3}$
$L\left(x_{5}\right)=L_{\text {ch }} y_{5}$	x_{5} O
$L\left(x_{6}\right)=L_{\text {ch }} y_{6}$	x_{6}
$L\left(x_{7}\right)=L_{\text {ch }} y_{7}$	

$$
\begin{aligned}
& L_{e}^{0}\left(x_{3}\right)=L\left(x_{0}\right) \boxplus L\left(x_{4}\right) \boxplus L\left(x_{5}\right) \\
& L_{e}^{0}\left(x_{4}\right)=L\left(x_{0}\right) \boxplus L\left(x_{3}\right) \boxplus L\left(x_{5}\right) \\
& L_{e}^{0}\left(x_{5}\right)=L\left(x_{0}\right) \boxplus L\left(x_{3}\right) \boxplus L\left(x_{4}\right)
\end{aligned}
$$

Decoding with the Sum-Product Algorithm

- Second check equation $x_{0} \oplus x_{2} \oplus x_{4} \oplus x_{5}=0$
- Third check equation $\quad x_{0} \oplus x_{2} \oplus x_{3} \oplus x_{5}=0$

$$
\begin{aligned}
& L_{e}^{1}\left(x_{0}\right)=L\left(x_{2}\right) \boxplus L\left(x_{4}\right) \boxplus L\left(x_{5}\right) \\
& L_{e}^{1}\left(x_{2}\right)=L\left(x_{0}\right) \boxplus L\left(x_{4}\right) \boxplus L\left(x_{5}\right) \\
& L_{e}^{1}\left(x_{4}\right)=L\left(x_{0}\right) \boxplus L\left(x_{2}\right) \boxplus L\left(x_{5}\right) \\
& L_{e}^{1}\left(x_{5}\right)=L\left(x_{0}\right) \mp L\left(x_{2}\right) \square L\left(x_{4}\right) \\
& L_{e}^{2}\left(x_{0}\right)=L\left(x_{2}\right) \boxplus L\left(x_{3}\right) \boxplus L\left(x_{5}\right) \\
& L_{e}^{2}\left(x_{2}\right)=L\left(x_{0}\right) \boxplus L\left(x_{3}\right) \boxplus L\left(x_{5}\right) \\
& L_{e}^{2}\left(x_{3}\right)=L\left(x_{0}\right) \boxplus L\left(x_{2}\right) \boxplus L\left(x_{5}\right) \\
& L_{e}^{2}\left(x_{5}\right)=L\left(x_{0}\right) \boxplus L\left(x_{2}\right) \boxplus L\left(x_{3}\right)
\end{aligned}
$$

Decoding with the Sum-Product Algorithm

- Variable update
- Collect extrinsic information of check nodes and update variable nodes

$$
L\left(x_{0}\right)=L_{\mathrm{ch}} y_{0}+A_{0}
$$

$$
A_{0}=\sum_{k} E_{0}^{k}
$$

$$
L\left(x_{1}\right)=L_{\mathrm{ch}} y_{1}+A_{1}
$$

$$
L\left(x_{2}\right)=L_{\mathrm{ch}} y_{2}+A_{2}
$$

$$
L\left(x_{3}\right)=L_{\text {ch }} y_{3}+A_{3}
$$

$$
L\left(x_{4}\right)=L_{\mathrm{ch}} y_{4}+A_{4}
$$

$$
L\left(x_{5}\right)=L_{\mathrm{ch}} y_{5}+A_{5}
$$

$$
L\left(x_{6}\right)=L_{\mathrm{ch}} y_{6}+A_{6}
$$

$$
L\left(x_{7}\right)=L_{\mathrm{ch}} y_{7}+A_{0}
$$

Example: BEC

$$
L(y)=\left\{\begin{array}{cc}
+\infty & y=Y_{0} \\
0 & y=? \\
-\infty & y=Y_{1}
\end{array}\right.
$$

Example: BEC

- Check equations \rightarrow calculate extrinsic information

$$
\begin{aligned}
& \begin{array}{llll}
x_{0} & 0 & 0 \\
x_{1} & 0 & 0 \\
x_{2} & ? & 0 \\
x_{3} & 0 & 0 \\
x_{4} & 0 & 0 \\
x_{5} & 0 & 0 \\
x_{6} \\
x_{7} & 0 & 0
\end{array} \\
& \operatorname{ch} k_{0} L_{e}^{1}\left(x_{2}\right)=L\left(x_{0}\right) \boxplus L\left(x_{4}\right) \boxplus L\left(x_{5}\right)=+\infty \quad L_{e}^{1}\left(x_{0}\right)=L_{e}^{1}\left(x_{4}\right)=L_{e}^{1}\left(x_{5}\right)=0 \\
& \text { chk } k_{1} L_{e}^{2}\left(x_{2}\right)=L\left(x_{0}\right) \boxplus L\left(x_{3}\right) \boxplus L\left(x_{5}\right)=+\infty \\
& \text { chk }_{2} L_{e}^{5}\left(x_{2}\right)=L\left(x_{1}\right) \boxplus L\left(x_{6}\right) \boxplus L\left(x_{7}\right)=0 \\
& \text { chk }_{3} L_{4}^{3} L_{e}^{3}\left(x_{6}\right)=L\left(x_{1}\right) \boxplus L\left(x_{3}\right) \boxplus L\left(x_{7}\right)=+\infty \\
& \operatorname{chk}_{5} L_{e}^{4}\left(x_{6}\right)=L\left(x_{1}\right) \boxplus L\left(x_{4}\right) \boxplus L\left(x_{7}\right)=+\infty \\
& L_{e}^{5}\left(x_{6}\right)=L\left(x_{1}\right) \boxplus L\left(x_{2}\right) \boxplus L\left(x_{7}\right)=0
\end{aligned}
$$

- Variable check

$$
\begin{array}{ll}
L_{a}\left(x_{2}\right)=L_{e}^{1}\left(x_{2}\right)+L_{e}^{2}\left(x_{2}\right)+L_{e}^{5}\left(x_{2}\right)=0 & L_{e}^{5}\left(x_{2}\right)=L_{e}^{1}\left(x_{2}\right)+L_{e}^{2}\left(x_{2}\right)=+\infty \\
L_{a}\left(x_{6}\right)=L_{e}^{3}\left(x_{6}\right)+L_{e}^{4}\left(x_{6}\right)+L_{e}^{5}\left(x_{6}\right)=0 & L_{e}^{5}\left(x_{6}\right)=L_{e}^{3}\left(x_{6}\right)+L_{e}^{4}\left(x_{6}\right)=+\infty
\end{array}
$$

Irregular LDPC-Codes

- Properties:
- Generalization of regular LDPC codes
- Lower error rates, i.e., better performance
- Irregular number of ones per column and per row
- Variable nodes of different degrees
- Check nodes of different degrees
- Example:

$$
\mathbf{H}=\left[\begin{array}{llllllll}
1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 1
\end{array}\right]
$$

Irregular LDPC－Codes

－Irregular number of ones per column and per row：
－$\quad \ell_{i}$ ：proportion of left（variable）nodes of degree i
－r_{i} ：proportion of right（check）nodes of degree i
－In example：

$$
\begin{array}{llll}
- & \ell_{3}=5 / 8 & \ell_{4}=1 / 8 & \ell_{5}=2 / 8 \\
\Rightarrow & r_{4}=3 / 6 & r_{5}=1 / 6 & r_{6}=2 / 6
\end{array}
$$

－Proportions of edges：
－λ_{i} ：proportion of edges incident to left nodes of degree i
－ρ_{i} ：proportion of edges incident to right nodes of degree i

－In example：
－$\lambda_{3}=15 / 29 \quad \lambda_{4}=4 / 29 \quad \lambda_{5}=10 / 29$
－$\rho_{4}=12 / 29 \quad \rho_{5}=5 / 29 \quad \rho_{6}=12 / 29$

Irregular LDPC-Codes

- LDPC codes are optimized via Density Evolution or EXIT analysis
- Probability density functions describing the distribution of check and variable nodes in a parity check matrix
- Specific codes can be found via random code generation following these distributions
\rightarrow PDFs will only be nearly fulfilled due to the finite number of checks and variables
\rightarrow Quality may vary in such an ensemble of codes due to random generation
- Example: $R_{\mathrm{c}}=1 / 2$ LDPC Code with $n=4096$ and $k=2048$
- Variable node distribution:

Degree	2	3	6	7	20
PDF	0.48394942887	0.29442753267	0.29442753267	0.074055964589	0.062432620582
Number	1986	1202	349	303	256

- Check node distribution

Degree	8	9
PDF	0.74193548387	0.25806451612
Number	1850	529

Simulation Results

- Irregular and regular LDPC code
- IR as previous slide
- Regular: $n=4096, k=2048$
- 3 ones in a column
- Random generation
- Performance
- Irregular better in waterfall region
- Error floor depends on n
\rightarrow lower error floor possible
- Remarks
- Regular codes are easier to attain

BER Performance of LDPC Code

- Number info bits $k=9507$
- Code word length $N=29507$
- Code rate $R_{C}=0.322$

[^0]: Interleaver combines 3 info words \rightarrow increase of eff. block length

