
Channel Coding 2

Dr.-Ing. Dirk Wübben
Institute for Telecommunications and High-Frequency Techniques

Department of Communications Engineering
Room: N2300, Phone: 0421/218-62385

wuebben@ant.uni-bremen.de

www.ant.uni-bremen.de/courses/cc2/

Lecture
Tuesday, 08:30 – 10:00 in N3130

Exercise
Wednesday, 14:00 – 16:00 in N2420

Dates for exercises will be announced
during lectures.

Tutor
Shayan Hassanpour

Room: N2390
Phone 218-62387

hassanpour@ant.uni-bremen.de

mailto:wuebben@ant.uni-bremen.de
http://www.ant.uni-bremen.de/courses/cc1/
mailto:hassanpour@ant.uni-bremen.de
mailto:emara@ant.uni-bremen.de

2

Outline Channel Coding II

 1. Concatenated Codes
 Serial Concatenation & Parallel Concatenation (Turbo Codes)
 Iterative Decoding with Soft-In/Soft-Out decoding algorithms
 EXIT-Charts
 BiCM
 LDPC Codes

 2. Trelliscoded Modulation (TCM)
 Motivation by information theory
 TCM of Ungerböck, pragmatic approach by Viterbi, Multilevel codes
 Distance properties and error rate performance
 Applications (data transmission via modems)

 3. Adaptive Error Control
 Automatic Repeat Request (ARQ)
 Performance for perfect and disturbed feedback channel
 Hybrid FEC/ARQ schemes

3

Chapter 1. Concatenated Codes

 Introduction
 Serial and Parallel Concatenation

 Interleaving
 Serial Concatenation

 Direct approach, Product Codes, Choice of Component Codes
 Parallel Concatenation

 Modification of Product Codes, Turbo-Codes, Choice of Component Codes
 Distance Properties and Performance Approximation
 Decoding of Concatenated Codes

 Definition of Soft-Information, L-Algebra, General Approach for Soft-Output
Decoding,

 BCJR-Algorithm, Iterative Decoding, General Concept of Iterative Decoding
 EXtrinstic Information Transfer (EXIT)-Charts
 Bitinterleaved Coded Modulation (BiCM)
 Low Density Parity Check (LDPC) Codes

4

Introduction

 Achieving Shannon’s channel capacity is the general goal of coding theory
 Block- and convolutional codes of CC-1 are far away from achieving this limit

 Decoding effort increases (exponentially) with performance
 Questionable, if Shannon’s limit can be achieved by these codes

 Concatenation of Codes
 Forney (1966): proposed combination of simple codes
 Berrou, Glaxieux, Thitimajshima: Turbo-Codes (1993):

Clever parallel concatenation of two convolutional codes
achieving 0.5 dB loss at Pb=10-5 to channel capacity

 Principal Idea:
 Clever concatenation of simple codes in order to generate a total code with high performance

and enabling efficient decoding
 Example:

 Convolutional Code with LC = 9  28 = 256 states
 2 Convolutional Codes with LC = 3  2·22 = 8 states  complexity reduction by a factor of 32

repeated decoding (6 iterations)  6·8 = 48 states  reduction by a factor of 5

Claude E. Shannon

David Forney

Claude Berrou Alain Glavieux Punya Thitimajshima

5

Serial and Parallel Code Concatenation

 Serial Code Concatenation

 Subsequent encoder obtains whole output stream of previous encoder
 redundancy bits are also encoded

 Parallel Code Concatenation
 Each encoder obtains only

information bits
 Parallel-serial converter generates

serial data stream
 Example: Turbo Codes

outer code
inner code

C1 C2 D1D2

C1

C2

Cq

P

S

Interleaving

6

 Interleaver performs permutation of symbol sequence
 Strong impact on performance of concatenated codes
 Also used to split burst errors into single errors for fading channels

 Block interleaver

 input sequence: x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14

 output sequence: x0, x3, x6, x9, x12, x1, x4, x7, x10, x13, x2, x5, x8, x11, x14

write
read

Column-wise write in, but
row-wise read out leads to
permutation of symbol sequence

interleaving depth LI = 5:
neighboring symbols of the input
stream have a distance of 5 in the
output stream
 given by number of columns

LI

𝑥𝑥0 𝑥𝑥3 𝑥𝑥6 𝑥𝑥9 𝑥𝑥12

𝑥𝑥1 𝑥𝑥4 𝑥𝑥7 𝑥𝑥10 𝑥𝑥13

𝑥𝑥2 𝑥𝑥5 𝑥𝑥8 𝑥𝑥11 𝑥𝑥14

Π

Π−1

channel

𝑥𝑥 𝑥𝑥′

𝑦𝑦𝑦𝑦𝑦

7

Interleaving

 Assumption: burst errors of length b should
be separated

 Aspects of dimensioning block interleaver
 Number of columns

 affects directly the interleaver depth LI
 LI ³ b is required, so that burst error of length b is broken into single errors by Π−1

 Number of rows
 Example: For a convolutional code with LC = 5, five successive code words are correlated
 for Rc =1/2 ten successive code bits are correlated

 In order to separate these ten bits (by LI to protect them from burst errors), the number of
rows should correspond to LC/Rc=10

 Time delay (latency)
 The memory is read out after the whole memory is written
 Notice: For duplex speech communication only an overall delay of 125 ms is tolerable

 Example: data rate 9,6 kbit/s and interleaver size 400 bits

rows columns bt T∆ = ⋅ ⋅

4002 2 83,3 ms
96001/

t
s

⋅ ∆ = =

Π

Π−1

channel

𝑥𝑥 𝑥𝑥′

𝑦𝑦𝑦𝑦𝑦

Burst error

8

Interleaving

 Convolutional Interleaver

 Consists of N registers and multiplexer
 Each register stores L symbols more than the previous register
 Principle is similar to block interleaver

 Random Interleaver
 Block interleaver has a regular structure  output distance is directly given by input

distance  leading to bad distance properties for Turbo-Codes
 Random interleavers are constructed as block interleavers where the data positions

are determined randomly
 A pseudo-random generator can be utilized for constructing these interleavers

L

2 L

(N-1) L

2 L

L

channel

(N-1) L

9

Serial Code Concatenation: Direct Approach

 Concatenation of (3,2,2)-SPC and (4,3,2)-SPC code

 Concatenation of (4,3,2)-SPC and (7,4,3)-Hamming code
u c1 c2 w H (c2)

000 0000 0000 000 0
001 0011 0011 001 3
010 0101 0101 010 3
011 0110 0110 011 4
100 1001 1001 100 3
101 1010 1010 101 4
110 1100 1100 110 4
111 1111 1111 111 7

u c1 c2 w H (c2)
00 000 0000 0
01 011 0110 2
10 101 1010 2
11 110 1100 2

C1 C2

dmin = 2

original concatenation:
dmin = 3

optimized concatenation:
dmin = 4

u c1 c2 w H (c2) c2 w H (c2)
000 0000 0000 000 0 0000 000 0
001 0011 0011 001 3 0001 111 4
010 0101 0101 010 3 0110 011 4
011 0110 0110 011 4 0111 100 4
100 1001 1001 100 3 1010 101 4
101 1010 1010 101 4 1011 010 4
110 1100 1100 110 4 1100 110 4
111 1111 1111 111 7 1101 001 4

Rc = 2/4 = 1/2

Rc = 3/7

Concatenation does not automatically
result in a code with larger distance

10

Serial Code Concatenation: Product Codes

u

pV

pH

p+

kH nH - kH

kV

nV - kV

CV

CH

 Information bits arranged in (kV,kH)-
matrix u

 Row-wise encoding with systematic
(nH, kH, dH)-code CH of rate kH/ nH
 each row contains a code word

 Column-wise encoding with systematic
(nV , kV , dV)-code CV of rate kV / nV
 each column contains a code word

 Entire code rate:

 Minimum Hamming distance:

H V
,H ,V

H V
c c c

k kR R R
n n

⋅
= = ⋅

⋅

min min,H min,Vd d d= ⋅

„checks on checks“

ΠCH CV
block interleaver

11

Serial Code Concatenation: Examples of Product Codes

x0

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x20

x21

x22

x23

x24

x25

x26

x27

(12,6,4) product code (28,12,6) product code

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x20

x21

x22

x23

x24

x25

x26

x27

x4

x1 x1 x15

 Horizontal: (4,3,2)-SPC code
 Vertical: (7,4,3)-Hamming code
 dmin = 2 · 3 = 6 correction of 2 errors possible

x1x1

Detection capability of
horizontal code exceeded

Interleaver combines 3 info words  increase of eff. block length

 Horizontal: (3,2,2)-SPC code
 Vertical: (4,3,2)-SPC code
 Code rate: 1/2
 dmin = 2 · 2 = 4
 Correction of 1 error & detection of 3

errors possible

12

Parallel Code Concatenation: Modified Product Codes

 Information bits u row-wise and
column-wise encoded with CH and
CV, respectively

 Parity check bits of component
codes not encoded twice
(no checks on checks)

 Entire code rate

 Minimum Hamming distance:

H V

H V H H V V

,H ,V

() ()
1

1/ 1/ 1

c

c c

k kR
n n n k n k

R R

⋅
=

⋅ − − ⋅ −

=
+ −

Π

CH

CV

u

pV

pH

kH nH - kH

kV

nV - kV

CV

CH

min min,H min,V 1d d d= + −

13

Parallel Code Concatenation: Examples

x0

x2

x3

x4

x5

x6

x7

x8

x9

x10

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x20

x21

x22

x23

x24

modified (11,6,3) product code modified (25,12,4) product code

 Horizontal: (3,2,2) SPC code
 Vertical: (4,3,2) SPC code
 Code rate: 6/11
 dmin = 2 + 2 -1 = 3
 1 error correctable

 Horizontal: (4,3,2) SPC code
 Vertical: (7,4,3) Hamming code
 dmin = 2 + 3 -1 = 4 1 error correctable

x1

x3

x9x1 x1

x4

x6

x22
dmin = 3

14

Union Bound on Bit Error Rate for Product Codes

 Product codes using same (n,k,3)-Hamming code
 Only taking into account minimum distance dmin=3+3-1=5
 results only valid for high signal to noise ratios

()10 010log /sE N

bP

0 2 4 6 8 10
10-10

10-5

100

(7,4)
(15,11)
(31,26)

()10 010log /bE N

bP

0 2 4 6 8 10
10-10

10-5

100

(7,4)
(15,11)
(31,26)

15

,1 ,2

1
1/ 1/ 1

=
+ −c

c c

R
R R

Parallel Code Concatenation: Turbo Codes
General structure with q constituent codes special case with 2 constituent codes

C1

C2

Cq

Π1

Π2

Πq

P

u

u1

u2

uq

c1

c2

cq

c

C1

C2

Π P

u

u=u1

u2

c1

c2

c

 Presented in 1993 by Berrou,
Glavieaux, Thitimajshima

 Interleaver P1 neglectable
 Information bits generally not punctured
 Code rate:

16

Potential of Turbo Codes

 Optimized interleaver of
length 256 x 256 = 65536 bits

 For this interleaver, gain of
nearly 3 dB over convolutional
code with Lc = 9

 Gap to Shannon‘s channel
capacity only 0.5 dB
(C = 0.5 at Eb/N0 = 0.19 dB)

 Tremendous performance
loss for smaller interleavers

 World record: 0.08 dB gap to
Shannon capacity by Stephan
ten Brink

Comparison convolutional codes / turbo codes for Rc=1/2

0 1 2 3 4 5 6
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Lc=3
Lc=5
Lc=7
Lc=9
TC

0.5 dB

0.19 dB 10 log10(Eb/N0)

Pb

17

Influence of Constituent Codes

 Systematic recursive convolutional encoders employed in turbo codes
 Constituent codes generate only parity bits

 Conventionally codes with small constraint length (3 ≤ Lc ≤ 5) and rate 𝑅𝑅𝑐𝑐 = 1
𝑛𝑛

(codes of larger rate can be achieved by puncturing)

 Error probability depends on interleaver size 𝐿𝐿𝜋𝜋 and minimum input weight 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 of
constituent encoders that leads to finite output weight

 Only recursive encoders require at least 𝑤𝑤min = 2 for finite output weight
 Interleaving gain only achievable for recursive encoders due to 𝑃𝑃𝑏𝑏~𝐿𝐿𝜋𝜋−1

 Nonrecursive encoders with 𝑤𝑤min = 1 do not gain from enlarging interleaver size
(𝑃𝑃𝑏𝑏~𝐿𝐿𝜋𝜋0)

min1
b

wLP π
−∼

RSC-Encoders are used as constituent codes
 performance improves with length of interleaver!

18

Influence of Constituent Codes

 Instead of free distance df the effective distance deff is crucial

 Interpretation: Turbo codes are systematic codes
 Total weight of code words depends on weight of information bits 𝑤𝑤min

 𝑐𝑐min denotes minimum weight of parity bits of one encoder for input weight 𝑤𝑤min = 2
 Assuming same constituent codes, minimum weight for 𝑤𝑤min = 2 is given by 𝑑𝑑eff

 Consequence:
 Suitable constituent codes should maximize parity weight for input weight 𝑤𝑤min = 2
 Aim is achieved if feedback polynomial of constituent encoders is prime

 Shift register generates sequence of maximum length (m-sequence)
 may have larger weight than shorter sequences

min min2effd w c= + ⋅

Feedback polynomial of constituent encoders should be prime!

19

Example of Turbo Code with 2 Codes (Lc = 3), Rc = 1/2

C1

C2

Π

u

u1

u2

c1

c2

c

T T

T T 1 0
0 1

 
=  

 
P

1 8

2 8

5
7

g
g

=

=
P

20

Example of Turbo Code with 2 Codes (Lc = 3), Rc = 1/2

 Recursive polynomial: g2(D) = 1 + D + D2

 g2(D) is prime
g2(0) = 1 + 0 + 0 = 1 and g2(1) = 1 + 1 + 1 = 1

 Shift register achieves sequence of maximum
length (m-sequence) with L = 22-1=3

 Max dist. 𝑑𝑑effmax = 𝑤𝑤min + 2 ⋅ 𝐿𝐿 + 1 = 2 + 2 ⋅ 4 = 10
 u = [1 0 0 1]  c1 = [1 1 1 1]

 Recursive polynomial: g1(D) = 1+ D2

 g1(D) = (1+D)(1+D) non-prime
 Shift register generates sequence of length L = 2
 Max dist.𝑑𝑑effmax = 𝑤𝑤min + 2 ⋅ 𝐿𝐿 + 1 = 2 + 2 ⋅ 3 = 8
 u = [1 0 1]  c1 = [1 0 1]

0 0

1 0 0 1

1 1

0/0

1/1
1/0

0/0
0/1

1/0

0/1

1/1

0 0

1 0 0 1

1 1

0/0

1/1
0/0

0/1
1/0

0/1

1/0

1/1

Feedback polynomial g1(D) would lead to degraded
performance!

21

Example of Turbo Code with 2 Codes (Lc = 5), Rc = 2/3

C1

C2

Π

u

u1

u2

c1

c2

c

T T

T T

T T

T T 1 0 0 0
0 0 1 0

 
=  

 
P

1 8 2 823 35g g= =

LTE Turbo Code with 2 Codes (Lc = 4)

22

Rate
Matching

C1

C2

Π

u

u1

u2

c1

c2

c
T

T

T T

T T

2 3 3
1 8 2 81 13 1 15g D D g D D= + + = = + + =

23

Influence of Interleaver

 Avoiding output sequences with low Hamming weight at both encoders
 If output c1 of C1 has low Hamming weight  permutation of input sequence u2 for C2

should result in output sequence c2 with high Hamming weight
 Higher total average Hamming weight / Hamming distance d

 Interleaver directly influences minimum distance
 Number of sequences with low weight reduced due to interleaving

 Small coefficients cd
 Even more important than minimum distance that acts only asymptotically

 Randomness of interleaver is important
 Simple block interleavers perform bad due to symmetry
 Pseudo-random interleavers are much better → random codes ( Shannon)

0

1 erfc
2

b
cdb

d

EP R
N

dc
 

≤ ⋅ ⋅ 
 

∑
cd: total number of nonzero info bits
associated with code sequences of
Hamming weight d

24

Distance Properties of Turbo Codes: Definitions

 General IOWEF (Input Output Weight Enumerating Function) of encoder:

 Conditioned IOWEF’s (specific input weight w or specific output weight d):

 Important for parallel concatenation: weight c of parity bits

 Corresponding conditioned IOWEF:

() ,
0 0

,
k n

w d
w d

w d
A W D A W D

= =

= ⋅ ⋅∑∑

() ,
0

,
n

d
w d

d
A w D A D

=

= ⋅∑ () ,
0

,
k

w
w d

w
A W d A W

=

= ⋅∑

() ,, c
c

w
w

w c
A CW A W C= ⋅ ⋅∑∑ with d w c= +

() ,, w
c

c
c

A w AC C= ⋅∑

Aw,d: number of code words with
input weight w and output weight d

All encoders have same input weight w
Encoders generate only parity bits
 consider weight c of parity bits

25

Distance Properties of Turbo Codes: Uniform Interleaver

 Problem: concrete interleaver has to be considered for distance spectrum /
IOWEF
→ determination of IOWEF computationally expensive

 Uniform interleaver (UI): theoretic device comprising all possible permutations

 UI provides average distance spectrum (incl. good and bad interleavers)

0 1 0 1

0 0 1 1

0 1 0 1

1 1 0 0

0 1 1 0

1 0 1 0

1 0 0 1

uniform
interleaver

1/6
1/6
1/6
1/6

1/6

1/6

4
2

possibilities 
 
 

26

Distance Properties of Turbo Codes: Results

 Parallel concatenation:
 Both encoders have same input weight w
 Weights c1 and c2 of encoder outputs are added

 A1(w,C)·A2(w,C) combines output sequences with same input weight w and covers all
possible combinations of output sequences (uniform interleaver)

 Denominator achieves averaging w.r.t. number of permutations of w ones in length Lπ

 Serial concatenation:
 Output weight  of outer encoder equals input weight of inner encoder

() 1 2
,

(,) (,),par par c
w c

c
L
w

w C CA AA C A Cww
π 

 
 

⋅
= = ⋅∑

() 1 2
,

(,) (,),ser ser w d
w d

w d
L

A W A DA W D A W D
π 

 
 

⋅
= = ⋅ ⋅∑ ∑∑





 

,
par

d w c
w c d

w
L

c A
π+ =

= ⋅∑

,1
ser

d w d
cw

w
L R

c A
π⋅

= ⋅∑

Distance Properties of Turbo Codes

 Codes
 Turbo Code

g1 = 58, g2 = 78

 Convolutional Code with
Lc=9

 Rc=1/3
 Observations

 UI  cd < 1 is possible
 TC has lower df but

coefficients cd are much
smaller
 effect becomes more
obvious with increasing
interleaver length Lπ

27

dc

distance d
5 10 15 20 25 30

10-5

100

105 TC, Lπ=100
TC, Lπ=400
CC

()10 010log /bE N

bP

0 2 4 6 8 10
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

AWGN

TC, L=100
TC, L=400
FC

Analytical Error Rate Estimation of Turbo Codes

 Observations
 For small SNR the TC

outperforms CC
significantly

 Gain increases with Lπ

 For increasing SNR the
BER of TC flattens,
whereas the curve of CC
decreases

 Explanations
 df dominates BER for

large SNR
 For small SNR the

number of sequences
with specific weight is of
larger importance

28

Flat Rayleigh Fading

29

 Definition of Soft-Information
 L-Algebra
 General Approach for Soft-Output Decoding
 Soft-Output Decoding using the Dual Code
 Soft-Output Decoding for (4,3,2)-SPC-Code
 BCJR Algorithm for Convolutional Codes

Decoding of Concatenated Codes

30

Decoding of Concatenated Codes

 Optimum Maximum Likelihood Decoding of concatenated codes is too complex
 Constituent codes C1 and C2 are decoded by separated decoders D1 and D2

 Decoders D1 and D2 are allowed to exchange “information” in to improve their
performance
 probability of information and/or code bits is of interest
 soft output decoding is required!

 What is a useful soft output?
 Assumption: uncoded transmission over AWGN channel
 BPSK modulation

 MAP criterion (Maximum a posteriori) considers unequal distribution of symbols

0 1
1 1

u x
u x

= → = +
= → = −

{ } { }Pr 0 | Pr 1|u y u y>
<= =

y x n= +

1 2x u= −

{ } { }Pr 1| Pr 1|x y x y>
<= + = −

∙ +1 -1
+1 +1 -1
-1 -1 +1

⊕ 0 1
0 0 1
1 1 0

31

Decoding of Concatenated Codes

 Conditional Probability

 Log-Likelihood-Ratio (LLR) (or L-values) derived by Hagenauer

 Sign of LLR’s equals hard decision

 Sign sgn 𝐿𝐿 �𝑥𝑥 corresponds to hard decision
 Magnitude 𝐿𝐿 �𝑥𝑥 indicates reliability of hard decision
 Another possible definition would be (not used)

{ }
{ }

{ }
{ }

1, 1,
Pr Pr

p x y p x y
y y

>
<

= + = − { }
{ }

{ }
{ }

{ }
{ }

1, | 1 Pr 1
1

1, | 1 Pr 1
p x y p y x x
p x y p y x x

= + = + = +
= ⋅

= − = − = −
>
<

{ }
{ }

{ }
{ }

{ }
{ }

(|) ()

1,
ˆ() (,) (|) ln 0

1,

| 1 Pr 1
ln ln (|) ()

| 1 Pr 1
a

a

L y x L x

p x y
L x L x y L x y

p x y

p y x x
L y x L x

p y x x

= +
= = =

= −

= + = +
= + = +

= − −

>
<

=
 

{ } { }() Pr 1 Pr 1L x x x= = + − = −

{ } { } { }Pr 1 1, Prx y p x y y= + = = +

Joachim
Hagenauer

Addition of LLRs requires
statistically independency
of variables!

32

Log-Likelihood-Ratio

 For an uncoded transmission the LLR consists of two components
 L(y|x) depends on channel statistics and therefore on the received signal y
 La(x) represents a-priori knowledge about symbol x

Pr{x = +1}

La(x)

0 0.2 0.4 0.6 0.8 1
-8

-6

-4

-2

0

2

4

6

8 { }
{ }

Pr 1
() ln

Pr 1a

x
L x

x
= +

=
= −

 Symmetric with respect to (0,5 ; 0)
 Pr{x = +1} > 0,5
 +1 more likely than -1
 positive La(x)

 The larger the difference between
Pr{x=+1} and Pr{x=-1} the larger La(x)
 suitable value for reliability

 Pr{x = +1} = 0,5 La(x) = 0 decision
would be random

33

LLR for a Memoryless Channel

 Memoryless channel (AWGN or 1-path fading channel)
 Channel information

 Lch= reliability of the channel (depends on SNR ES / N0 and channel gain |α|2)

y x n= α +

() { }
{ }

()
()

() ()

2

2

2

2

2 2

2 2

2
2

0 0

1exp /| 1 2ln ln
1| 1 exp /

2
1 1/ /

2 2
4 / /

4 4
2 /

ch

s s

s s

s s s s

s s s s s

s

L

y E Tp y x
L y x

p y x y E T

y E T y E T

y E T E T Ey y
N T N

 − − α = + σ = =
= −  − + α σ 

= + α − − α
σ σ
α

′= = α = α
σ



2 0

2 s

N
T

σ =with

/s s

yy
E T

′ =
α

normalized received signal

34

LLR for a Memoryless Channel

 Reliability of channel:

 LLR is simply a scaled version of the matched filter  motivation for ln
L(y|x) versus y

y
-2 -1 0 1 2

-60

-40

-20

0

20

40

60

0 dB
2 dB
4 dB
6 dB
8dB

() 2

0

4 sEL y x y
N

′= α

2

0

4ch
sL E

N
= α

high channel reliability

LLRs for BSC and BEC

 Binary Symmetric Channel (BSC)

 Binary Erasure Channel (BEC)

35

1-Pe

1-Pe

Pe

Pe

Y0

Y1

X0

X1

1-Pq

1-Pq

Y0

Y1

X0

X1

Y2

Pq

Pq

() { }
{ }

0

1

1ln 1
| 1 1ln ln
| 1 ln 1

1

e

e e

e e

e

P y Y
Pp y x PL y x y
Pp y x Py Y

P

− = = += + −= = = ⋅= −  = = −
 −

for

for

()

0

0

2 2

1

1

1
ln

0

ln 0

0ln
1

q

q

q

q

P
y Y

y Y
P

L y x y Y y Y
P

y Y
y Y

P

 −
 =
 +∞ = = = = = 
 −∞ =

=
−

for
for

for for
for

for

0 0.2 0.4 0.6 0.8 1
𝑃𝑃𝑒𝑒

-5

0

5

𝐿𝐿(
𝑦𝑦|
𝑥𝑥)

Relation between LLRs and Probabilities (1)

 Matched filter corresponds to LLR  Task: Find arithmetic to perform operation
with respect to LLR instead of probabilities  L-algebra by Hagenauer

 Basic relation
 Using completeness (Pr{x = +1} + Pr{x = -1} = 1) in LLR

 With respect to symbol x∈{+1,-1} the general relation holds

36

{ }
{ }

{ }
{ }

{ }
{ }

Pr 1| Pr 1| 1 Pr 1|
ˆ() (|) ln ln ln

Pr 1| 1 Pr 1| Pr 1|
x y x y x y

L x L x y
x y x y x y

= + = + − = −
= = = =

= − − = + = −

{ }
ˆ()

ˆ ˆ() ()
1Pr 1|

1 1

L x

L x L x
ex y

e e−= + = =
+ +

{ } ˆ()
1Pr 1|

1 L xx y
e

= − =
+

{ } { }
ˆ()/2

ˆ()/2
ˆ ˆ() sgn() ()

1Pr | 1, 1
1 1

L x
i L x

L x i L x
ex i y e i

e e
⋅

− ⋅= = ⋅ = ∈ − +
+ +

with

37

Relation between LLRs and Probabilities (2)

 Probability of a correct decision
 For x = +1 decision is correct, if 𝐿𝐿(�𝑥𝑥) is positive

 For x = -1 decision is correct, if 𝐿𝐿(�𝑥𝑥) is negative

 Soft bit: expected value for antipodal tx signal

{ }
ˆ()

ˆ()
ˆPr

1

L x

L x

ex
e

=
+

 is correct

{ }
ˆ()ˆ()

ˆ() ˆ()
ˆPr 1

1 1

L xL x

L x L x

e ex x
e e

= + = =
+ +

 correct

{ }
ˆ()

ˆ() ˆ ˆ() ()

1 1ˆPr -1
1 1 1

L x

L x L x L x

ex x
e e e−

= = = =
+ + +

 correct

{ } { } () ()
ˆ ˆ() ()

ˆ ˆ ˆ()))
1

((1 1
ˆ1 1 ()ˆ ˆE Pr tanh

1 1 1 2

L x L x

L
i

L x L x xi i e e L xx x
e e e=±

−
λ = = ⋅ = = +

+
− = =

+ +
+∑

{ } 1ˆPr 1
2

x λ +
= + = +1

-1

L-Algebra

 Parity bits are generated by modulo-2-sums of certain information bits
 how can we calculate the L-value of a parity bit?  Hagenauer

 Assumption: Single parity check code (SPC) L(p) = ?
 x1 and x2 are statistically independent

38

1 2p u u= ⊕

() () { }
{ }

{ }
{ }

1 2 1 2
1 2 1 2

1 2 1 2

Pr 0 Pr 1
ln ln ()

Pr 1 Pr 1
u u x x

L p L u u L x x
u u x x

⊕ = ⋅ = +
= ⊕ = = = ⋅

⊕ = ⋅ = −

()

()2

12artanh ln
1

1tanh
1

x
x

x

xx
x

e
e

+
=

−
−

λ = =
+

()

[]

1 2 1 2

1 2 1 2

() () () ()

1 2 () () () ()

1 2
1 2 1 2

1 1ln ln

() ()2artanh tanh tanh 2artanh () ()
2 2

L x L x L x L x

L x L x L x L x
e e eL x x
e e e e

L x L x L x L x+

+⋅ + +
⋅ = =

+ +
    = ⋅ = λ ⋅λ =        

() { } { } { } { }
{ } { } { } { }

{ }
{ }

{ }
{ }

{ }
{ }

{ }
{ }

1 2

1 2 1 2 1 2
1 2

1 21 2 1 2

1 2

Pr 1 Pr 1
1

Pr 1 Pr 1 Pr 1 Pr 1 Pr 1 Pr 1
ln ln

Pr 1 Pr 1Pr 1 Pr 1 Pr 1 Pr 1
Pr 1 Pr 1

x x
x x x x x x

L x x
x xx x x x
x x

= + = +
⋅ +

= + ⋅ = + + = − ⋅ = − = − = −
⋅ = =

= + = += + ⋅ = − + = − ⋅ = +
+

= − = −

boxplus
operation

L-Algebra

 mod-2-sum of 2 statistically independent random variables:

 mod-2-sum of n variables:

39

() []

[] [] { }

1 2
1 2 1 2 1 2

1 2 1 2

() ()2artanh tanh tanh 2artanh () ()
2 2

sgn () sgn () min () , ()

L x L xL u u L x L x

L x L x L x L x

+
    ⊕ = ⋅ = λ ⋅λ =        

≈ ⋅ ⋅

() ()

{ } []

1
11

1

2artanh tanh () / 2 ()

min () sgn ()

n n

n i i
ii

n

i ii i

L u u L x L x

L x L x

==

=

+
 

⊕ ⊕ = = 
 

≈ ⋅

∑∏

∏



tanh(x/2)

tanh(x/2)

2 artanh(x)

1()L x

2()L x

1 2()L x x⋅+1

-1

1λ

2λ

+1
-1

General Approach for Soft-Output Decoding

 For FEC encoded sequence MAP criterion should be fulfilled

 Symbol-by-Symbol MAP Criterion:

 L-value for estimation of information bit ui given by receive sequence y
 Joint probability density function p(ui=0/1,y) not available  elementary conversions

 Using the completeness, the code space is split into two subsets

40

() ()
()

0,
ˆ ln

1,
i

i
i

p u
L u

p u
=

=
=

y
y

() (,)i
i

P a P a b= ∑
()0

1()

0

1

contains all with
contains all with

i i

i i

u

u

Γ = =

Γ = =

c

c

()
()
()

() { }
() { }

() ()

(1)

0 0

()1

, | Pr
ˆ ln ln

, | Pr
i i

i i

i

p p
L u

p p
∈Γ ∈Γ

∈Γ ∈Γ

⋅
= =

⋅
∑ ∑
∑ ∑

c c

c c

c y y c c

c y y c c

() ()
() ()

0

1

()

()

,0

1

,

, ,
i

i

i

i

p u p

p u p
∈Γ

∈Γ

= =

= =

∑
∑

c

c

y c y

y c y

sum over 2k/2=2k-1 code words
in numerator and in
denominator

General Approach for Soft-Output Decoding

 Assuming statistical independency of the yj (transmission over AWGNC)
 Succeeding noise terms nj are independent, but of course not succeeding code bits

cj (interdependencies introduced by encoder)!
 p(y|c) represents probability density conditioned on the hypothesis c
 yj are statistically independent random variables

 Each codeword c is uniquely determined by the corresponding info word u
(ui are statistically independent)

41

{ } { } { }
1

0

Pr Pr Pr
k

j
j

u
−

=

= = ∏c u ()
() { }

() { }
(0)

)1(

1 1

0 0
1 1

0 0

| Pr
ˆ ln

| Pr

i

i

n k

j j j
j j
n k

j j j
j j

i

p y c u
L u

p y c u

− −

= =∈Γ
− −

= =∈Γ

⋅

=
⋅

∑ ∏ ∏

∑ ∏ ∏
c

c

()
() { }

() { }

(0)

)1(

1

0
1

0

| Pr
ˆ ln

| Pr

i

i

n

j j
j
n

j j
j

i

p y c
L u

p y c

−

=∈Γ
−

=∈Γ

⋅

=
⋅

∑ ∏

∑ ∏
c

c

c

c
() ()

1

0

| |
n

j j
j

p p y c
−

=

= ∏y c

Symbol-by-Symbol MAP

General Approach for Soft-Output Decoding

 Symbol-by-Symbol MAP for systematic encoders
 For systematic encoder ui = ci holds for 0 ≤ i ≤ k-1 i-th term p(yi|ci) is constant in

numerator and denominator  can be separated together with P(ui)

 Soft-Output can be split into 3 statistically independent parts:
♦ Systematic part Lch·yi

♦ A-priori information La(ui)

♦ Extrinsic information Le(ui): information provided by code bits connected with ui

42

() ()
()

{ }
{ }

() { }

() { }

() ()

(0

)1

)

(

1 1

0 0

1 1

0 0

| Pr
| Pr

ˆ ln ln ln
| Pr

0 0
1 1 | Pr

i

i

n k

i i i

j j j
j j
j i j i
n k

j j

i
i i i

j
j j
j i j i

ch a iei i

p y c u
p y u u

L u
p y u u p y c u

L y L u L u

− −

= =∈Γ
≠ ≠
− −

= =∈Γ
≠ ≠

⋅
= =

= + +
= = ⋅

= ⋅ + +

∑ ∏ ∏

∑ ∏ ∏

c

c

General Approach for Soft-Output Decoding
 Compact description of extrinsic information

 Calculation of extrinsic information with LLR‘s:

43

()
0

1

()

()

1

0

1

0

exp (;)
() 0

ˆ ln (;)
exp (;)

i

i

n

j j j
j
j i ch a

e n
ch

j j j

i

i

j
j

L c y c
L y L u k

L u L c y
L y k nL c y c

−

=∈Γ
≠
−

=∈Γ
≠

 − ⋅ 
⋅ + ≤ <

= =  ⋅ ≤ < − ⋅ 

∑ ∏

∑ ∏

c

c

 

 







with

() { } () () { }
()

1 1 1

0 0 0

| Pr 0
| Pr ; (;)

|
with

n k n

j j j j j
j j j
j i j i j i

p y c u k
p y c u p y c p y c

p y c k n

− − −

= = =
≠ ≠ ≠

 ⋅ ≤ <
⋅ = =  ≤ <

∏ ∏ ∏   

 

 





()
() { }

() { }

()

()

0 0() ()

()1) (1

1 1 1

0 0 0

1 1 1

0 0 0

| Pr ;

ˆ ln ln
| Pr ;

i i

i i

n k n

j j j j j
j j j
j i j i j i

e n k n

j j j j j
j j j
j i j i j

i

i

p y c c p y c

L u
p y c c p y c

− − −

= = =∈Γ ∈Γ
≠ ≠ ≠
− − −

= = =∈Γ ∈Γ
≠ ≠ ≠

⋅

= =
⋅

∑ ∑∏ ∏ ∏

∑ ∑∏ ∏ ∏

c c

c c

Soft-Output Decoding of Repetition Codes

 Code word 𝐜𝐜 = 𝑐𝑐0 𝑐𝑐1 ⋯ 𝑐𝑐𝑛𝑛−1 contains 𝑛𝑛 repetitions of information word 𝐮𝐮 = [𝑢𝑢0]
 Set of all code words for 𝑛𝑛 = 3 is given by Γ = {000, 111}

 Corresponds to averaging of LLRs

44

()
() { }

() { }

() []{ }

() []{ }

() () () { }
() () () { }

()
()

()
()

()
()

{ }

()

()
0

0
0

1

1 1

0 0
1 1

0 0

0 1 2

0 1 2

0 1 2

0 1 2

0

| Pr | 0 Pr 000
ˆ ln ln

| Pr |1 Pr 111

| 0 | 0 | 0 Pr 0
ln

|1 |1 |1 Pr 1

| 0 | 0 | 0 Pr 0
ln ln ln ln

|1 |1 |1 P

n n

j j j
j j
n n

j j

i

i

j
j

i

j

p y c p y
L u

p y c p y

p y p y p y u
p y p y p y u

p y p y p y u
p y p y p y

− −

=∈Γ =
− −

= =∈Γ

⋅ ⋅ =
= =

⋅ ⋅ =

⋅ ⋅ ⋅ =
=

⋅ ⋅ ⋅ =

=
= + + +

∑ ∏ ∏

∑ ∏ ∏
c

c

c c

c c

{ }
() () () ()0 0 1 1 2 02

r 0

| | |
i

a

u

L y c L y c L y c L u

=

= + + +

Soft-Output Decoding using the Dual Code

 Calculation of extrinsic information requires summation over all code words c of
the code space Γ
 The (255,247,3) Hamming code contains 2247 = 2.3·1074 code words

 Instead of calculating the LLR over all code words c of the code , it is also
possible to perform this calculation with respect to the dual code ┴

 Beneficial, if the number of parity bits is relatively small
 dual code for (255,247,3) Hamming code contains only 28 = 256 code words

 Calculation of extrinsic information with dual code:

45

()
()

1

0

1

0

(;)tanh
2

ˆ ln
(;)tanh

2
1 i

i
c

cn

i
e cn

i

L c y

L u
L c y

⊥

⊥

′−

=′∈Γ
≠

′−

=′∈Γ
≠

′

  
    

=
  

    
−

∑ ∏

∑ ∏

c

c





 





 





Summation over all 2n-k code
words c’ of the dual code

Soft-Output Decoding of (4,3,2)-SPC using the Dual Code
 Calculation of extrinsic information requires summation over 23 = 8 code words.

Instead, the dual code contains only 2n-k = 2 words Γ┴ = {0000, 1111}.
 Calculation of LLR

46

()

{ } []

1

0

1

0

1

0

1

0

(;)1 tanh
2

ˆ ln
(;)1 tanh

2

(;)2artanh tanh
2

min (;) sgn (;)

n

i
i ch i n

i

n

ch i

i

n

ch i i

i

L c y

L u L y
L c y

L c yL y

L y L c y L c y

−

=
≠

−

=
≠

−

=
≠

−

≠
=
≠

  +     
= ⋅ +

  −     

 
   = ⋅ +       

 

≈ ⋅ + ⋅

∏

∏

∏

∏

 





 





 





   







()1ln 2artanh
1

x x
x

+
=

−
with

Each cÎG fulfills ccT=0, i.e. ci is given
by modulo-2-sum of all other code
bits cj:

i j
j i

c c
≠

= ∑ ()
1

()
n

e i j
j
j i

L c L x
=
≠

+= ∑

First term in numerator and
denominator (c=0000) is one.

47

Soft-Output Decoding for (4,3,2)-SPC-Code

u 1 0 1

c 1 0 1 0

encoding

x -1 +1 -1 +1

BPSK

y -0.8 +1.1+0.3+0.4

AWGN

Lch·y -5.1 +7.0+1.9+2.5

Es/N0 = 2dB

HD
-1 +1 +1 +1 error detected.

but not corrected

HD
-1 +1 -1 +1

error corrected

Le(û) +1.9 -1.9 -2.5 -1.9

Approximation for+

L(û) -3.2 +5.1 -0.6 +0.6

Lch·y+ Le(û)=

Pr{û correct}

0.960.990.650.65

0 /10

2/10

4 0

4 10
4 10 6,34

ch
EsN

L EsN= ⋅

= ⋅

= ⋅ =

dB

lin

()
1

()
n

e i j
j
j i

L c L x
=
≠

+= ∑

48

BCJR Algorithm for Convolutional Codes

 Symbol-by-Symbol MAP Decoding:

 Efficient calculation of LLR based on the Trellis diagram (exploiting Markov prop.)

()
(',), 1

(',), 0 (',

(',), 1

), 0
(', ,) (', , , ,)(,)ˆ ln ln ln

(,) (', ,) ('
0

, , , ,)1
i i

i i

k i i k i

i s

s s u s s ui
i

k i ks s u iu is
u

p s s p s spL u
p p s s p s

u
s

<

=

= >

<=

=

>

= = =
=
=

∑ ∑
∑ ∑

y y y yy
y y y y y

00

10

01

11
i-1 i

ui = 1

ui = 0

state s‘
(',)k ip s <y

state s
(|)k ip s>y(, | ')ip s sy

Bahl, Cocke, Jelinek, Raviv (1972)

Trellis of a RSC with Lc=3

,0 ,1 , 1i i i i ny y y − =  y 

[]1 2 N=y y y y

49

BCJR Algorithm for Convolutional Codes

 Splitting up the observations yk>i

 Backward probability: Probability of the sequence yk>i, if the trellis is assumed
in state s at time instant i

 Splitting up the observations yi

 Transition probability: Probability of observing yi under the condition that the
transition from s’ to s takes place at time instant i yk<i not relevant

 Possibility to use a-priori knowledge within the decoding process  Pr{s|s’} ~ ui

(', , ,(', , , ,) (', , ,))k i i k i k i k i i k i ip s p s ss p s s< > <> <= ⋅y y y y y y yy

(', , ,) ()() k i k i i ii kp s s p ss > < >β = =y y y y

(, ' ((', , , ',),)) k ik i i i k ip s psp s ss << <= ⋅y yyy y

{ }
{ }
{ } { }

(, ',) (, ')

Pr ',(', ,) (',) (',) Pr '
Pr ' P

(

r '

',) i k i i

i
i

i

i

p s s p s s

s sp s s p s s p s s s s
s s

s s <= =

= = = ⋅

γ y y y

y y y

If state s at time instant i is known, the
parameter s’, yi, yk<i are not relevant

p{yi|s’,s}: transition probability
of channel

Pr{s|s’} : a-priori-information

i-1 i

state s‘
(',)k ip s <y

state s
(|)k ip s>y(, | ')ip s sy

50

BCJR Algorithm for Convolutional Codes

 Forward probability:
 Probability density splits into three terms

 Compact description of Symbol-by-Symbol MAP

 Recursive Calculation
 Forward probability

 Backward probability

 Initialization Terminated code otherwise

1 ',)(() k ii p ss <−α =′ y

() (',), 0 (',), 0

(',), 1 (',),

1

11

(', , , ,)
ˆ ln l

(',)(')
n

(' ('(') ,), , , ,)

()

()
i i

i i

k i i k is s u s s u
i

k i i k is s u s s u

i

i

i

i

i

i

p s s
L u

p

s s

ss s ss

s s

s
−< >= =

< >= = −

βα

α

⋅ ⋅
=

γ
=

⋅ β⋅γ
∑ ∑
∑ ∑

y y y

y y y

1 (', ()(', , ,) '), ()i ik i i k i iss sp ss s< > −= ⋅ ⋅α βγy y y

1
'

1(, (',)() (')) iki
s

ii s sp ss s< + −α α= = ⋅γ∑y

1 1('((')) (,))'k ii ii
s

p s ss ss > −− = = β⋅γβ ∑y

0

1 ' 0
0 ' 0

(')
s
s

s
=

α


=  ≠

1 ' 0
0 ' 0

()N

s
s

s
=

β


=  ≠
() 2N

ms −β =

ai-1(0) gi(0,0)

ai-1(1)

ai(0)

βi-1(3) gi(3,3)

gi(3,1)

βi(3)

βi(1)

i-1 i

state s‘
(',)k ip s <y

state s
(|)k ip s>y(, | ')ip s sy

(m memory elements)

Probability of sequence yk<i, if
the trellis is assumed in state s’
at time instant i-1

51

BCJR Algorithm for Convolutional Codes

 Symbol-by-Symbol MAP Decoding:

() 1

1

(',), 0

(',), 1

(0,)ˆ ln ln
(1,)

(',)

('

(')

(')))

(

,

)

(
i

i

i

i

s s ui
i

i

ii

s s iu i

ss s

s
p uL u
p su

s

s s
−

−

=

=

⋅ ⋅=
= =

= ⋅ ⋅

γ β

γ β

α

α
∑
∑

y
y

𝛽𝛽𝑁𝑁 0 = 1𝛼𝛼0 0 = 1

𝛼𝛼0 2 = 0

𝛼𝛼0 1 = 0

𝛼𝛼0 3 = 0

𝛼𝛼1 0

𝛼𝛼1 2

𝛼𝛼1 1

𝛼𝛼1 3

𝛼𝛼2 0

𝛼𝛼2 2

𝛼𝛼2 1

𝛼𝛼2 3

𝛼𝛼3 2

𝛼𝛼3 1

𝛼𝛼3 3

𝛽𝛽𝑁𝑁 2 = 0

𝛽𝛽𝑁𝑁 1 = 0

𝛽𝛽𝑁𝑁 3 = 0

𝛽𝛽𝑁𝑁−1 0

𝛽𝛽𝑁𝑁−1 2

𝛽𝛽𝑁𝑁−1 1

𝛽𝛽𝑁𝑁−1 3

𝛽𝛽𝑁𝑁−2 0

𝛽𝛽𝑁𝑁−2 2

𝛽𝛽𝑁𝑁−2 1

𝛽𝛽𝑁𝑁−2 3

𝛾𝛾𝑁𝑁 0,0

ui = 1

ui = 0

00

10

01

11
0 2 3 𝑁𝑁 − 2 𝑁𝑁 − 1 𝑁𝑁1

𝛼𝛼3 0 = 𝛼𝛼2 0 𝛾𝛾3 0,0
+𝛼𝛼2 1 𝛾𝛾3 1,0𝛾𝛾1 0,0 𝛾𝛾2 0,0 𝛾𝛾3 0,0 𝛾𝛾𝑁𝑁−1 0,0

52

Calculation in Logarithmic Domain

 Implementation with respect to probabilities is complicated
 numerical problems  implementation in the logarithmic domain favorable
 Transition variable

 Forward variable

 Backward variable

 Initialization Terminated code otherwise

{ }
{ }2

2

ln ln (',) ln Pr '

1 (

(',) (',

',) ln Pr ()
2

)

',

ii

i
N

i

i

p s s s s

C s s u u s

s s s

s

s = = +

= − − + =

γ γ

σ

y

y x

() ()()
' '

1 1() () (') ('(',) (ln ln ln exp)',)i i
s

i
s

i iis s s s ss s s− −= = ⋅ =α +γα α αγ∑ ∑

() ()()1 1 (',) (',(' ln l) (') () ()l e)n n xpi i
s

i i i i
s

s ss s s ss s− −= = ⋅β β β β= γ +γ∑ ∑

0

0 ' 0
' 0

(')
s
s

s
=

−∞
α


=  ≠

0 ' 0
0

)
'

(N s
s
s

=
= −∞ ≠

β


) .(N c ts ons=β

53

Calculation in Logarithmic Domain: Jacobi Logarithm

 In recursion, ln of sum of exponents occur

 Proof
 For x1 > x2

 For x1 ≤ x2

 Second term has small range between 0 and ln 2
 efficiently be implemented by a lookup table w.r.t |x1-x2|

() [] () []1 21 2 *
1 2 1 2ln max , ln 1 max ,x xx xe e x x e x x− −+ = + + =

[] ()()() () ()() ()1 2 1 2 1 21 1*
1 2 1max , ln 1 ln ln 1 ln 1x x x x x xx xx x e e e e x e− − − − − −= + = + + = + +

[] ()()() () ()() ()2 1 2 1 1 22 2*
1 2 2max , ln 1 ln ln 1 ln 1x x x x x xx xx x e e e e x e− − − − − −= + = + + = + +

54

Calculation in Logarithmic Domain: Jacobi Logarithm

 Simplify logarithm of sums
 Forward variable

 Backward variable

 Declaration:
 Log-MAP: implementation of BCJR in log-domain with correction term
 Max-Log-MAP: implementation in log-domain without correction term

()
1 2

*
1 1 21 (,) (,)

(

() () () ()

()

l

l

n max

n 1ma ,

,

)x i

s

i i ii ii i i

ii i

s s s s

e

s s s s

ss s −

−

∆

−  = = + + 

 = + + 

′ ′β β β β

β

′

γ +

′γ γ

′

() [] [] ()1 21 2 *
1 2 1 2ln max , max , ln 1 x xx xe e x x x x e− −+ = = + +

()()
[]

[] ()

1

1 1 11 2 2
*

' 1

'
() () (')

(

(',)

(,) (,)

(',)

ln ln exp

max ,

ma l

) ()

(')x n 1 i

i i i

i

i

i i

i

i

s

s i

s s s

s

e

s

s s

s s s s

s ss

−

− −

− ∆
−

γ

′ ′

α

γ γ

γ

= = +

= + +

= + + +

α α

′ ′α α

α

∑

()
()

1 1 1

2 1 2

()

(,) (

,)

)

(i

i i

i i s s

s s

s

s
−

−

= +

− +

′α′γ

′ ′α

∆

γ

correction term

()
()

1

22

1()(

)

,

(

)

(,)
i

i

i

i

i i

i

s s

s s

s

s

β

β

= +

− ′γ

∆

+

′γ
correction term

55

 General Structure for Parallel Concatenated Codes
 Turbo Decoding for (24,16,3)-Product Code
 Simulation Results
 Turbo Decoding for Serially Concatenated Codes

Iterative Decoding

56

General Concept for Iterative Decoding

 Parallel Concatenated Codes

C1

C2

Π

u

u=u1

u2

c1

c2

c0

D1

D2

Π

Π−1

y1
y2

y0

Decoder
systematic (message) bits

parity bits
A priori information

soft-decision estimates
for message bits

Le,1

La,2

Le,2

La,1

𝐿𝐿(�𝑢𝑢)

𝐿𝐿(�𝑢𝑢)

Π

57

Turbo Decoding for (24,16,3) Modified Product Code (1)

1

0

1

0

0

1

0

0

0

1

1

0

1

1

0

1

u -1

+1

-1

+1

+1

-1

+1

+1

+1

-1

-1

+1

-1

-1

+1

-1

+1

-1

+1

-1

+1 -1 +1 -1

x
encoding

BPSK

AWGN

SNR=2 dB

1. vertical extrinsic
decoding information

Lch · y

+ L|
e,1 (û)

-0.7

4.5

-7.0

0.7

6.3

-3.1

1.9

1.9

-2.5

2.5

-4.4

6.9

-3.8

-3.8

8.2

-10.1

𝐿𝐿1
| �𝐮𝐮 = Lch · y + 𝐿𝐿𝑒𝑒,1

| �𝐮𝐮

0.6

5.1

-7.6

1.3

7.6

-4.4

3.2

-1.3

1.3

3.8

-5.7

8.2

-3.2

-0.6

7.6

-9.5

6.3

-9.5

1.3

-12.7

1.9 -5.7 7.6 -7.0

LLR
Lch · y

-1.3

-0.6

0.6

-0.6

-1.3

1.3

-1.3

3.2

-3.8

-1.3

1.3

-1.3

-0.6

-3.2

0.6

-0.6

𝐿𝐿𝑒𝑒,1
| �𝐮𝐮-1.3

-0.6

0.6

-0.6

-1.3

1.3

-1.3

3.2

-3.8

-1.3

1.3

-1.3

-0.6

-3.2

0.6

-0.6

𝐿𝐿𝑎𝑎,1
− �𝐮𝐮 = 𝐿𝐿𝑒𝑒,1

| �𝐮𝐮

Vertical extrinsic info serves
as horizontal a-priori info

58

Turbo Decoding for (24,16,3) Modified Product Code (2)

0

0

1

0

0

1

0

0

1

1

1

0

1

1

0

1

û1

1.8

2.0

-8.3

2.6

5.6

-0.6

3.2

2.6

-1.8

-0.6

-5.7

7.6

-3.1

-1.3

9.5

-10.8

𝐿𝐿1− �𝐮𝐮-0.7

4.5

-7.0

0.7

6.3

-3.1

1.9

1.9

-2.5

2.5

-4.4

6.9

-3.8

-3.8

8.2

-10.1

6.3

-9.5

1.3

-12.7

1.9 -5.7 7.6 -7.0

Lch · y + 𝐿𝐿𝑎𝑎,1
− �𝐮𝐮

2.5

-2.5

-1.3

1.9

-0.7

2.5

1.3

0.7

0.7

-3.1

-1.3

0.7

0.7

2.5

1.3

-0.7

𝐿𝐿𝑒𝑒,1
− �𝐮𝐮

Lch · y +

L–
e,1 (û) +

L–
a,1 (û)

1. horizontal

decoding

3.1

2.6

-8.9

3.2

6.9

-1.9

4.5

-0.6

2.1

0.7

-7.0

8.9

-2.5

1.9

8.9

-10.2

6.3

-9.5

1.3

-12.7

1.9 -5.7 7.6 -7.0

Lch · y + 𝐿𝐿𝑎𝑎,2
| �𝐮𝐮 𝐿𝐿𝑒𝑒,1

− �𝐮𝐮
= 𝐿𝐿𝑎𝑎,2

| �𝐮𝐮

59

Turbo Decoding for (24,16,3) Modified Product Code (3)

-1.9

-1.9

1.9

-1.9

-0.6

0.6

-0.6

1.9

-0.7

-2.1

0.7

-0.7

1.9

-2.5

-1.9

1.9

L|
e,2 (û)

Lch · y +

L|
e,2 (û)

2. vertical
decoding

Lch y + L–
a,2 (u)

-1.3

3.2

-5.7

-0.6

7.0

-3.8

2.6

0.6

0.6

1.7

-5.0

7.5

-1.3

-3.1

5.7

-7.6

6.3

-9.5

1.3

-12.7

1.9 -5.7 7.6 -7.0

1.2

0.7

-7.0

1.3

6.3

-1.3

3.9

1.3

1.4

-1.4

-6.3

8.2

0.6

-0.6

7.0

-8.3

L2
|(û)

3.1

2.6

-8.9

3.2

6.9

-1.9

4.5

-0.6

2.1

0.7

-7.0

8.9

-2.5

1.9

8.9

-10.2

6.3

-9.5

1.3

-12.7

1.9 -5.7 7.6 -7.0

Lch y + L|
a,2 (u)

-0.6

-1.7

-1.3

0.6

0.6

1.7

1.3

-0.6

1.3

-3.1

-1.3

-0.6

-0.6

1.7

1.3

0.6

L–
e,2 (û)

2. horizontal

decoding

Lch · y +
L–

e,2 (û) +
L–

a,2 (û)

1

0

1

x

0

1

0

x

0

1

1

0

1

1

0

1

û2
-1.9

1.5

-7.0

0

7.6

-2.1

3.9

0

2.1

-1.4

-6.3

6.9

-1.9

1.4

1.3

0.6

L–
2 (û)

60

Turbo Decoding for (24,16,3) Modified Product Code (4)

-1.9

0

0

0

-1.9

1.9

-1.9

2.7

-0.7

-2.6

0.7

-0.7

1.1

-3.8

-1.1

1.1

L|
e,3 (û)

Lch · y +

L|
e,3 (û)

3. vertical
decoding

-1.9

3.4

-8.9

1.9

6.3

-0.8

2.6

0.8

1.9

-1.9

-6.3

7.5

-2.7

-2.7

7.8

-7.8

L3
|(û)

0.0

3.4

-8.9

1.9

8.2

-2.7

4.5

-1.9

2.6

0.7

-7.0

8.2

-3.8

1.1

8.9

-8.9

6.3

-9.5

1.3

-12.7

1.9 -5.7 7.6 -7.0

Lch y + L|
a,3 (u)

-0.6

-1.2

-1.3

1.4

0.6

1.2

1.3

1.3

1.3

-2.5

-1.3

1.3

-0.6

1.2

1.3

-1.3

L–
e,3 (û)

3. horizontal

decoding

Lch · y +
L–

e,3 (û) +
L–

a,3 (û)

1

0

1

0

0

1

0

0

0

1

1

0

1

1

0

1

û3
-1.9

3.9

-8.9

2.7

6.3

-1.3

2.6

2.7

1.9

-1.3

-6.3

8.8

-2.7

-3.2

8.8

-9.7

L–
2 (û)

Lch y + L–
a,3 (u)

-1.3

5.1

-7.6

1.3

5.7

-2.5

1.3

1.4

0.6

1.2

-5.0

7.5

-2.1

-4.4

7.5

-8.4

6.3

-9.5

1.3

-12.7

1.9 -5.7 7.6 -7.0

Turbo Decoding for Parallel Concatenated Codes

 Both decoders estimate same information word u and each decoder receives
corresponding channel outputs

 Systematic information bits ys are fed to D2 via D1 and Π
 Each decoder generates extrinsic information for bit u serving as a priori

LLRs for other decoder
 A priori LLRs improve decoders’ performance in each iteration as long as they

are statistically independent of regular inputs

61

D1 D2Π

Π−1

𝐿𝐿ch ⋅ 𝐲𝐲
𝐿𝐿1 �𝐮𝐮 = 𝐿𝐿ch ⋅ 𝐲𝐲s

+𝐿𝐿e,1 𝐮𝐮
+𝐿𝐿a,1 𝐮𝐮

𝐿𝐿ch ⋅ 𝐲𝐲s + 𝐿𝐿a,2 𝐮𝐮
𝐿𝐿2 �𝐮𝐮 = 𝐿𝐿ch ⋅ 𝐲𝐲s

+𝐿𝐿a,2 𝐮𝐮
+𝐿𝐿e,2 𝐮𝐮

𝐿𝐿a,1 𝐮𝐮 =𝐿𝐿e,2 𝐮𝐮

only Lch y2 is fed to decoder D2

62

Simulation Results for Modified Product Codes (7,4,3)-Hamming Codes

()10 010log /bE N

bP

0 2 4 6 8
10-6

10-4

10-2

100

It.1
It.2
It.3
analyt.

 Observations
 Gains decrease with

number of iterations
 Same info bits are

estimated and correlation
of a-priori information
increases

 With the larger interleaver
length the gains of
subsequent iterations are
generally larger 
statistical independence
of bits is required

63

Simulation Results for Modified Product Codes
(15,11,3)-Hamming-Codes

()10 010log /bE N

bP

0 1 2 3 4 5 6
10-6

10-4

10-2

100

It.1
It.2
It.3
analyt.

 Observations
 Larger interleaver leads

to improved statistic
 gains for iteration 3

64

Simulation Results for Modified Product Codes
(31,26,3)-Hamming-Codes

()10 010log /bE N

bP

0 1 2 3 4 5 6
10-6

10-4

10-2

100

It.1
It.2
It.3
analyt.

 Observations
 Larger interleaver leads

to improved statistic
 gains for iteration 3

 For larger SNR the BER
flattens
 minimum distance
dominates error rate for
large SNR

Simulation Results for Modified Product Codes

 Hamming codes have 𝑑𝑑min = 3 for all lengths 𝑛𝑛
 Analyzed product codes have same 𝑑𝑑min similar error rates versus 𝐸𝐸𝑠𝑠/𝑁𝑁0

 Code rates are different  longer product codes are better versus 𝐸𝐸𝑏𝑏/𝑁𝑁0

65

()10 010log /sE N

bP

0 2 4 6
10-6

10-4

10-2

100

(7,4)
(15,11)
(31,26)

()10 010log /bE N

bP

0 2 4 6
10-6

10-4

10-2

100

(7,4)
(15,11)
(31,26)

66

Simulation Results for Turbo Codes (Lc = 3)

bP

()10 010log /bE N
1 2 3 4 5 6

10-5

10-4

10-3

10-2

10-1

100
10x10 Block-Interleaver

It. 1
It. 2
It. 3
It. 4
It. 5
It. 6

()10 010log /bE N

bP

1 2 3 4 5 6
10-5

10-4

10-3

10-2

10-1

100
30x30 Block-Interleaver

It. 1
It. 2
It. 3
It. 4
It. 5
It. 6

 Gains decrease with number of iterations
 Increase of interleaver size leads to

reduced BER

67

Simulation Results for Turbo Codes (Lc = 3)

bP

0/ in dBbE N
1 2 3 4 5 6

10-5

10-4

10-3

10-2

10-1

100
900-Random-Interleaver, Rc=1/3

It. 1
It. 2
It. 3
It. 4
It. 6
It. 10

bP

0/ in dBbE N
1 2 3 4 5 6

10-5

10-4

10-3

10-2

10-1

100
Comparison of different interleavers

CC, Lc=9
BIL-100
BIL-400
BIL-900
RIL-900
RIL-900,Rc=1/3

 Usage of random interleaver leads to
significant performance improvements in
comparison to block interleaver

 Random interleaver (RIL) achieves
larger gains in comparison to block
interleaver (BIL)

Turbo Decoding for Serially Concatenated Codes

 Outer decoder receives information only from inner decoder
 Outer decoder delivers estimates on information bits u as well as extrinsic LLRs

of code bits c1 being information bits of inner code C2

 Extrinsic LLRs of code bits c1 serve as a priori LLRs for inner code C2

68

D2 D1

Π
systematic inner encoderouter encoder

C2C1

Π−1

Π

𝐿𝐿2 ��𝒄𝒄1 = 𝐿𝐿ch ⋅ 𝐲𝐲s
+𝐿𝐿e,2 �𝐜𝐜1
+𝐿𝐿a,2 �𝐜𝐜1

𝐿𝐿ch ⋅ �𝐲𝐲S + 𝐿𝐿a,1 𝐜𝐜1
𝐿𝐿 �𝐮𝐮

𝐿𝐿2 𝐜𝐜1 = 𝐿𝐿ch ⋅ �𝐲𝐲S
+𝐿𝐿a,1 𝐜𝐜1
+𝐿𝐿e,1 𝐜𝐜1

𝐿𝐿𝑎𝑎,2 �𝐜𝐜1 = Π{𝐿𝐿e,1 𝐜𝐜1 }

Comparison of Serial and Parallel Concatenation

69

serial
parallel
n = 120
n = 1200
n = 12000

0 1 2 3 4 5 6

10-4

10-3

10-2

10-1

100

10-5

BE
R

0/ in dBbE N

Results for specific setup,
no generalization possible!

Repeat Accumulate Code by ten Brink

 Approximately 100 decoding iterations are needed
 Half-rate outer repetition encoder and rate-one inner recursive convolutional

encoder

70

0 0.1 0.2 0.3 0.4 0.5 0.6

10-4

10-3

10-2

10-1

100

10-5

Eb/N0 in dB

BER

Repeat Accumulate Code by Stephan ten Brink

71

EXtrinsic Information Transfer Chart

(EXIT-Charts)

Stephan ten Brinn

Mutual Information for Turbo Decoder

 Parallel Concatenation

73

D1 D2

Π−1

ΠC

Mutual Information for Single Decoder

74

BPSK DC

75

General Concept of Iterative „Turbo“ Decoding

 BER curve shows three different regions
 At low SNR the iterative decoding performs worse than uncoded transmission
 At low to medium SNR the iterative decoding is extremely effective  waterfall

region
 At high SNR the decoding converges already in few iterations  error floor

 How to understand this varying behavior?
 Extrinsic information is exchanged between decoders
 Analysis of iterative process by semi-analytic approach

 Determine analytically mutual information 𝐼𝐼 𝑢𝑢; 𝐿𝐿𝑎𝑎 𝑢𝑢 between information bits and
a-priori input of decoder

 Determine by simulation mutual information 𝐼𝐼 𝑢𝑢; 𝐿𝐿𝑒𝑒 𝑢𝑢 between information bits and
extrinsic output of decoder for specific a-priori information at input

 Draw relationship between both mutual information's
 Combine diagrams of both contributing decoders into one chart:

→ EXIT chart: EXtrinsic Information Transfer chart

76

Distribution of Extrinsic Information

 Investigation of extrinsic decoder output

 Example: [7,5]-RSC at Eb/N0 = 0, …, 2 dB
 PDF of extrinsic estimate is given for

xi = +1 and xi = -1 separately

 Extrinsic information is nearly
Gaussian distributed

 With increasing SNR
 the mean’s absolute value is increased
 the variance is increased

() () ()ˆ ˆe i i ch i a iL u L u L y L u= − ⋅ −

()1e ip xξ = +

()1e ip xξ = −
-20 -15 -10 -5 0 5 10 15 20
0

0.05

0.1

0.15

0.2
0.0 dB
0.5 dB
1.0 dB
1.5 dB
2.0 dB

-20 -15 -10 -5 0 5 10 15 20
0

0.05

0.1

0.15

0.2
0.0 dB
0.5 dB
1.0 dB
1.5 dB
2.0 dB

Iterative Decoding: With increasing
number of iterations the extrinsic
information approaches a Gaussian
distribution

77

Analytical Model for the A-Priori Information

 Extrinsic information of decoder 1 becomes a-priori-information of decoder 2
and vice versa

 For EXIT analysis the a-priori information A=La is modeled as
 Gaussian random variable nA of zero mean and variance 𝜎𝜎𝐴𝐴2 is

added to the value x of the transmitted systematic bit multiplied by

 Normalization of a-priori information with 12𝜎𝜎𝐴𝐴
2

 With increasing variance the probability
functions are more separated and do not
overlap anymore

() ()2 2

2

2
1 exp

22

A
i

A i
AA

x
p x

σ ξ − ⋅ ξ = − σπσ  
 

A AA x n= µ ⋅ +

21
2A Aµ = σ

2 1Aσ = 2 16Aσ =

-50 0 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-50 0 50
0

0.01

0.02

0.03

0.04

0.05

0.06

-50 0 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

2 36Aσ =

78

Motivation for Modeling A-Priori Information

 LLR for uncoded transmission over AWGNC is given by

 LLR is Gaussian distributed with mean mA and variance sA
2

 The mean’s absolute value equals the half of the variance
 Model for a-priori LLR

() { }
{ }



()
0

| 1
ln 4

| 1
ch

s
ch h

L

c

p y x EL y x y L y L x n
p y x N

= +
= = = ⋅ = ⋅ +

= − 2 2
0

1 24 4
2

s
ch

n n

EL
N

= = =
σ σ

() 2 2
2 2

n n

L y x x n= ⋅ + ⋅
σ σ

2 0

2n
s

N
T

σ = 2 1s
x

s

E
T

σ = =

(){ 2
2

A
n

E L y x i iµ = = = ⋅
σ (){ }2

2
2

2 22
2 2

2 4
n

A n
n n

E n
σ

 
σ = ⋅ = ⋅σ = σ σ 

a A AA L x n= = µ ⋅ + ()2 21
2 2 2

2 4~ , ,A A
n n

A
 

± σ σ = ± σ σ 
 

with

and

()2~ 1, ny x n= + ± σ

79

Mutual Information of A-Priori Information and Info Bits

 Mutual information between systematic bits and a-priori LLR

 0 £ IA £ 1
 Integral has to be solved numerically
 J(sA) is monotonically increasing in sA
 has a unique inverse function sA = J-1(IA)

 Close approximation for J-function

and its inverse

() () () ()
() (){ }

()() () (){ } ()2

2
1, 1

221 1
2 222

21; log
2 1 1

11 exp log 1 1 log 1
2

i

A

A i
A A A i

x A i A i

A A
A

p x
I I X A p x d

p x p x

e d E e J

∞

= + − −∞

∞
−ξ −ξ

σ
−∞

ξ
σ = = ξ ξ

ξ = − + ξ = +

= − − ξ − σ + ξ = − + = σ
πσ

∑ ∫

∫

() () ()0.892 35 1.1064
0.30731 2 A

A AAJ I
⋅− ⋅σ= ≈σ −σ

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Aσ

()A AI σ

() ()
1

2 0.89351 1/1.10641 log 2 1
0.3073A AA J I I

⋅−  σ ≈ = − − 
 

80

Mutual Information of Extrinsic Information and Info Bits

 Mutual information between systematic bits and extrinsic LLR

 0 £ IE £ 1

 Semi analytical approach to determine the dependency of mutual information at
decoder input and output
 Perform encoding for a random information sequence u c = f(u) and x = 1-2c
 Transmit BPSK signals over AWGN channel y = x + n
 For given IA determine sA using the inverse J-function sA= J-1(IA)
 Model a-priori information using analytical model: A = mA x + nA

 Perform decoding of noisy receive signal y using a-priori information A
 Determine mutual information IE for extrinsic information using histogram for

approximating pdf pE(ξ|xi)

 Transfer characteristic shows dependency of IE and IA

() () ()
() (){ }

2
1, 1

21; log
2 1 1

i

E i
E E i

x E i E i

p x
I I X E p x d

p x p x

∞

= + − −∞

ξ
= = ξ ξ

ξ = − + ξ = +∑ ∫

()0, /E A bI Tr I E N=

81

Measurement of the Mutual Information

 By application of ergodic theorem (expectation is replaced by time average), the
mutual information can be measured for large number N of samples

 Measurement setup




22 / nσ
n

22 /
An′σAn′

()21 log 1 ex Le− ⋅− +

() (){ } ()2 2
1

1; 1 log 1 1 log 1 n n

N
x LL

n
I L X E e e

N
− ⋅−

=

= − + ≈ − +∑

()21 log 1 ax Le− ⋅− +

Average

{ }1x ∈ ±

{ }0,1u ∈

(),EI L X

Average
(),AI L X

()L y x

()aL x

()eL x

systematic bits

2 24 /
AA n′σ = σ

()2 21
2 2 2

2 4~ , ,
A A

A A A
n n

L A
′ ′

 
= ± σ σ = ±  σ σ 

 

Dependency of Mutual Information at Decoder Input and Output

 Transfer characteristic for
(37,23r)8- RSC code
 Decoder processes L(y|x) and

La(x)
 Observations

 IE increases with growing SNR
and IA

 IA=0 no a-priori information
available

 IA=1 perfect a-priori
 IE is reliable regardless of
SNR

 For high SNR, nearly no a-
priori information is required
for good decoding results

82

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

-0.5 db
0.0 db
0.5 db
1.0 db
1.5 db
2.0 db
2.5 db
3.0 db

(); ()
E

eL
I

I u u
=

(); ()A aLI I u u=

Dec.𝐿𝐿𝑎𝑎

𝐿𝐿ch ⋅ 𝑦𝑦 𝐿𝐿𝑒𝑒

83

 Transfer characteristic if
only a-priori information is
provided to the decoder
(c.f. serial concatenation)

 Weak codes better for
low a-priori information

 Strong codes better for
high a-priori information

 Point of intersection for all
convolutional codes close
to (0.5,0.5)
(explanation for this
behavior unknown!)

Behavior of different Convolutional Codes

(); ()
E

e

I
I u L u

=

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lc = 5

Lc = 7

Lc = 3

Serial concatenation: Outer decoder gets only a-priori information of inner decoder
 Transfer function of outer decoder is independent of SNR

(); ()A aI I u L u=

Dec.𝐿𝐿𝑎𝑎 𝐿𝐿𝑒𝑒

Comparison of MAP and Max-Log-MAP

 High channel SNR leads
to high extrinsic
information

 Large a-priori information
can compensate bad
channel conditions

 Max-Log-MAP decoder
performs nearly as good
as optimal MAP decoder

84

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Eb / N0 = -1 dB
Eb / N0 = 0 dB
Eb / N0 = 1 dB
Eb / N0 = 2 dB
Eb / N0 = 3 dB

Dec.

85

EXtrinsic Information Transfer (EXIT) Charts

 Extrinsic information provided
by one decoder is used
as a-priori information
for other decoder

 For EXIT charts the transfer function of both constituent codes are drawn into
one diagram with exchanging the abscissa and ordinate for the second code

 Assumptions
 A large interleaver is assumed to assure statistical independence of IA and IE

 For inner decoders in a serial concatenated scheme and for parallel concatenated
schemes the input parameters are Lch and IA

 For outer decoders in a serial concatenation only IA
(outer) appears as input which is

taken form the interleaved signal IE
(inner)

(Transfer function of outer decoder is independent of SNR)

D1D2

EXIT Charts for Serial Concatenation

 Outer non-recursive
convolutional encoder
(15,13)8, 𝑅𝑅𝑐𝑐 = 3/4

 Inner recursive
convolutional encoder
(13,15r)8, 𝑅𝑅𝑐𝑐 = 2/3

86

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1
Eb/N0 = -1.0 dB
Eb/N0 = 0.0 dB
Eb/N0 = 1.0 dB
Eb/N0 = 1.2 dB
Eb/N0 = 2.0 dB
Eb/N0 = 3.0 dB

outer decoder

pinch-off SNR:
minimum SNR
for convergence
of turbo
decoder

EXIT Charts for Serial Concatenation

 Outer non-recursive
convolutional encoder
(15,13)8, 𝑅𝑅𝑐𝑐 = 3/4

 Inner recursive
convolutional encoder
(13,15r)8, 𝑅𝑅𝑐𝑐 = 2/3

87

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

88

EXtrinsic Information Transfer (EXIT) Charts

() ()1 2; ;) (()e aI I u LL uu u=

() ()1 2; ;) (()a eI I u LL uu u=
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

() ()2 21 1

0

1 1erfc 8
2 2 2

b
b c A E

EP R J I J I
N

− − 
≈ + + 

 Outer convolutional code

Inner Walsh-Hadamard code

89

EXtrinsic Information Transfer (EXIT) Charts

 Determining pinch-off SNR: minimum SNR for which convergence is maintained

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

() ()1 2; ;) (()e aI I u LL uu u=

() ()1 2; ;) (()a eI I u LL uu u=10log10(Eb/N0) = - 0.3 dB

Code Design for Half-Rate Repeat-Accumulate Code

90

Outer repetition code

Inner recursive
convolutional encoder

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

outer repetition code
inner code

Signal-to-Noise ratio

91

 General Structure for Serially Concatenated Blocks
 Calculation of LLRs
 Simulation Results

Bitinterleaved Coded Modulation

92

Bit-Interleaved Coded Modulation (BICM)

 Coded transmission with higher order modulation:
 Binary vector of length m is mapped to one of 2m symbols of the alphabet 𝕏𝕏
 Usually Gray mapping employed 𝑥𝑥 ∈ 𝕏𝕏 minimizes bit error probability without channel coding
 Good properties regarding the capacity of a BICM system

 Interpretation as serially concatenated system
 Insertion of interleaver between encoder and mapper leads to pseudo random mapping of bits

onto specific levels and is crucial for iterative turbo detection
 Iterative detection and decoding: demapper and decoder exchange extrinsic information

 How to perform turbo detection / decoding?
 Are there better mapping strategies than Gray mapping?

channel
encoder

demapperchannel channel
decoderΠ Π-1mapper

Π

93

Soft-Output Demapping

 LLR for each of the m bits (for one specific time instant 𝑘𝑘):

 A priori information 𝐿𝐿𝑎𝑎 𝑐̃𝑐𝜈𝜈 provided by decoder

() () ()
()

()
()

{ }

()
()

{ }

() { }

() { }

(){ }

(){ }

0

1

GF 2 , 0

GF 2 , 1

2

2
, 0

2

, 1 2

1

1

, 0
ln ln

, 1

exp

ln ln

e

Pr

Pr

PrP

xp

r

Pr
Pr

m

m

c

c

x nx c

x c

m

n

m

x

c xx

p y
p y c

L c L c y
p yp y c

y x
p y x

p y x
c

x x
x

y

µ

µ

µµ

µ

µ

∈ =µ
µ µ

µ
∈ =

∈∈ =
ν

ν=

ν=

∈ ν

∈

=

⋅
=

= = =
⋅=

 −
− ⋅ ⋅  σ = =

 ⋅ −
− ⋅  σ 

∑

∑

∑∑

∑ ∑

∏

∏

c

c

c

c

c

c



 



dem






(){ }
() ()

()
1 1

Pr
1

a

a

c x L cm m

L c

ec x
e

ν ν

ν

−

ν −
ν= ν=

=
+

∏ ∏




94

 Denominator of a priori information cancels when inserted into 𝐿𝐿dem 𝑐̃𝑐𝜇𝜇

 Intrinsic information 𝐿𝐿𝑖𝑖dem 𝑐̃𝑐𝜈𝜈 is independent of a priori information 𝐿𝐿𝑎𝑎 𝑐̃𝑐𝜈𝜈

Soft-Output Demapping

() ()
() ()

() ()

0

1

1

2

2

2

2
1

exp

ln

exp

a

a

m
c x L c

m
c x L c

x n

x n

y x

L c L c y
y x

e

e

µ

µ

ν ν

ν ν

−

ν=

−

ν

∈

µ µ

∈ =

 −
− ⋅  σ = =

 −
− ⋅  σ 

∑ ∏

∑ ∏ 



 

dem 



() () ()
() ()

() ()

0

1

1,

1,

2

2

2

2

exp

ln

exp

a

a

m
c x L

a

x n

x n

c

m
c x L c

i L c L c

y x

y x

L c

e

e

ν ν

ν ν

µ

µ

−

ν= ν

µ

≠

µ µ

∈

∈

µ

−

ν= ν≠µ

= −

 −
− ⋅  σ =

 −
− ⋅  σ 

∏

∑ ∏

∑

 

d demem





95

Soft-Output Demapping for 16-QAM

00110110

0000 00010101

0010

0100

0111

1101

11101111 1010

10001100

1011

1001 Re

Im
00110110

0000 00010101

0010

0100

0111

1101

11101111 1010

10001100

1011

1001 Re

Im

()
() (){ }

() (){ }

2
0
1

2
1
1

21

1
2

1

1

1

Pr

Pr

exp
ln

exp

n

n
x

m

m
x

y x
L c

y x

c x

c x

ν
ν

σ
∈

σ
∈

=

ν
ν=

− − ⋅
=

− − ⋅

∑

∑

∏

∏


dem 



()1L cdem ()4L cdem

96

System Model for BICM

channel
encoder

mapper

channel
decoder

soft
demapper

Π

Π

channel
Transmitter

Receiver

Π-1

𝑢𝑢 𝐜𝐜 𝑘𝑘 = 𝑐𝑐1[𝑘𝑘] , … , 𝑐𝑐𝑚𝑚[𝑘𝑘] 𝑥𝑥[𝑘𝑘]

𝑦𝑦[𝑘𝑘]�𝑢𝑢
𝐿𝐿𝑖𝑖dem 𝑐̃𝑐𝜈𝜈
+𝐿𝐿𝑎𝑎 𝑐̃𝑐𝜈𝜈𝐿𝐿𝑖𝑖dem 𝑐̃𝑐𝜈𝜈

𝐿𝐿dec 𝑐̃𝑐𝜈𝜈 = 𝐿𝐿𝑎𝑎 𝑐̃𝑐𝜈𝜈

97

Selected Bit-Mappings for 8-PSK

000

011
101

110

001

010
100

111

2
22

3

2
2 2

3

000

011
101

110

111

001
010

100

2
22

1

2
2 2

1

000

001
010

011

100

101
110

111

1
21

3

1
2 1

3

000

001
011

010

110

111
101

100

1
11

1

1
1 1

1

000

111
001

110

011

100
010

101

3
23

2

3
2 3

2

Gray

natural

d21

d23

Anti-
Gray

98

EXtrinsic Information Transfer Charts

 Demapper: a priori information
mutual information

 Detection and decoding only
once
 Gray is best

 Iterative detection and decoding
 Anti-Gray is best

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Anti-Gray

d21
d23

Gray
natural

I0 I2

Eb/N0 = 5 dB

BCH(8,4)

1

1

8

8

I (c; L dem
a)

I(
c;

Lde
m

i
)=

I(
c;

Lde
c

a
)

I (c; L dem
a) = I (c; L dec)

99

Bit Error Rates

Eb/N0 [dB]

 Simulation parameters
 BCH(8,4)
 8-PSK
 Alamouti scheme
 360 coded bits per frame
 Independent Rayleigh fading
 Channel const. for 24 symbols

 First detection and decoding
 Gray good, Anti-Gray bad

BE
R

0 5 10 15 2010
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Anti-Gray

d21
d23

Gray
natural  After four iterations

 Anti-Gray is best

 Same results as predicted
by EXIT charts

4 iterations

100

 Definition and properties of LDPC codes
 Iterative decoding
 Simulation results

Low Density Parity Check Codes

101

LDPC Codes

 Low Density Parity Check Codes
 Invented by Robert G. Gallager in his PhD thesis, 1963
 Re-invented by David J.C. Kay in 1999

 LDPC codes are linear block codes with sparse parity check matrix H
 contains relatively few ‘1’ spread among many ‘0’ (for binary codes)

 Iteratively decoded on a factor graph of the check matrix

 Advantages
 Good codes
 Low decoding complexity

102

Introduction

 Recall: For every linear binary (n, k) code  with code rate Rc = k/n
 There is a generator matrix G ∈ GF(q)k×n such that code words x ∈ GF(q)n and info

words u ∈ GF(q)k are related by

 There is a parity-check matrix H ∈ GF(q)m×n of rank{H} = n-k, such that

 Relation of generator and parity check matrix

= ⋅x u G

T⋅ =x H 0

T⋅ =G H 0

103

Regular LDPC-Codes

 Definition: A regular (dv,dc)-LDPC code of length n is defined by a parity-check
matrix H ∈ GF(q)m×n with dv ones in each column and dc ones in each row. The
dimension of the code (info word length) is k = n – rank{H}

 Example:
 n = 8, m = 6, k = n - rank{H} = 4 (!), RC= 1/2
 dv = 3, dc = 4

1 0 0 1 1 1 0 0
1 0 1 0 1 1 0 0
1 0 1 1 0 1 0 0
0 1 0 1 0 0 1 1
0 1 0 0 1 0 1 1
0 1 1 0 0 0 1 1

 
 
 
 

=  
 
 
 
 

H

104

Regular LDPC-Codes

 Design Rate: The true rate RC and the design rate Rd are defined as

 Proof: The number of ones in the check matrix m·dc = n·dv. Some parity check
equations may be redundant, i.e., m ≥ n-k, and thus

 The check matrices can be constructed randomly or deterministic
 Encoding

 LDPC codes are usually systematically encoded, i.e., by a systematic generator
matrix

 The matrix P can be found by transforming H into another check matrix of the code,
that has the form

C
kR
n

= 1 v
d

c

dR
d

= −and with C dR R≥

k k k n k× × − =  G I P

T
k n k n k n k× − − × −′  = − H P I

1 1 1 v

c

dk n k m
n n n d

−
= − ≥ − = −

105

Factor Graph

 A factor graph of a code is a graphical representation of the code constraints
defined by a parity-check matrix of this code

 The factor graph is a bipartite graph with
 a variable node for each code symbol,
 a check node for each check equation,
 an edge between a variable node and a check node if the code symbol participates

in the check equation

 Notice that each edge corresponds to one ‘1’ in the check matrix.

T⋅ =x H 0

106

Factor Graph

 Example:

[]0 1 7

1 0 0 1 1 1 0 0
1 0 1 0 1 1 0 0
1 0 1 1 0 1 0 0
0 1 0 1 0 0 1 1
0 1 0 0 1 0 1 1
0 1 1 0 0 0 1 1

T

T x x x

 
 
 
 

⋅ = = 
 
 
 
 

x H 0

0 3 4 5

0 2 4 5

0 2 3 5

1 3 6 7

1 4 6 7

1 2 6 7

0
0
0
0
0
0

x x x x
x x x x
x x x x
x x x x
x x x x
x x x x

⊕ ⊕ ⊕ =

⊕ ⊕ ⊕ =

⊕ ⊕ ⊕ =

⊕ ⊕ ⊕ =

⊕ ⊕ ⊕ =

⊕ ⊕ ⊕ =

x0

x1

x2

x3

x4

x5

x6

x7

chk0

chk1

chk2

chk3

chk4

chk5

chk0

chk1

chk2

chk3

chk4

chk5

n = 8 columns (code word length)

n-k = 6 parity check equations

Each check node represents one row of
parity check matrix

Check nodesVariable nodes

107

Decoding with the Sum-Product Algorithm

 Similar to Turbo Decoding, extrinsic information is exchanged
 Check nodes „collect“ extrinsic information from the connected variable nodes
 Variable nodes „collect“ extrinsic information from the connected check nodes

 Iterative decoding procedure
 Also called „message passing“ or “believe propagation”

x0

x3

x4

x5

chk0

x0
chk0

chk1

chk2

0
0E

1
0E

2
0E

0L

3L

4L

5L

Check node example Variable node example

0 i
i

chk L+= ∑ 00
k

kA E= ∑
boxed plus

k

i
ij

i

k

j
K

LE +

≠
∈

= ∑
T⋅ =x H 0Stop if

extrinsic info

108

Decoding with the Sum-Product Algorithm

 First check equation
 Is the check equation fulfilled?
 Extrinsic information

0 3 4 5 0x x x x⊕ ⊕ ⊕ =

0 3 4 5x x x x= ⊕ ⊕ ()0
0 3 4 5() () ()eL x L x L x L x+ +=

()
()
()

0
3 0 4 5

0
4 0 3 5

0
5 0 3 4

() () ()

() () ()

() () ()

e

e

e

L x L x L x L x

L x L x L x L x

L x L x L x L x

+ +

+ +

+ +

=

=

=

x0

x1

x2

x3

x4

x5

x6

x7

chk0

chk1

chk2

chk3

chk4

chk5

0 3 40 5() () () ()L x L x L x Lh xc k + + +=

L(x0) = Lch y0

L(x1) = Lch y1

L(x2) = Lch y2

L(x3) = Lch y3

L(x4) = Lch y4

L(x5) = Lch y5

L(x6) = Lch y6

L(x7) = Lch y7

109

Decoding with the Sum-Product Algorithm

 Second check equation

 Third check equation

 …

0 2 4 5 0x x x x⊕ ⊕ ⊕ = ()
()
()
()

1
0 2 4 5

1
2 0 4 5

1
4 0 2 5

1
5 0 2 4

() () ()

() () ()

() () ()

() () ()

e

e

e

e

L x L x L x L x

L x L x L x L x

L x L x L x L x

L x L x L x L x

+ +

+ +

+ +

+ +

=

=

=

=

x0

x1

x2

x3

x4

x5

x6

x7

chk0

chk1

chk2

chk3

chk4

chk5

0 2 3 5 0x x x x⊕ ⊕ ⊕ =

()
()
()
()

2
0 2 3 5

2
2 0 3 5

2
3 0 2 5

2
5 0 2 3

() () ()

() () ()

() () ()

() () ()

e

e

e

e

L x L x L x L x

L x L x L x L x

L x L x L x L x

L x L x L x L x

+ +

+ +

+ +

+ +

=

=

=

=

110

Decoding with the Sum-Product Algorithm

 Variable update
 Collect extrinsic information of check nodes and update variable nodes

x0

x1

x2

x3

x4

x5

x6

x7

chk0

chk1

chk2

chk3

chk4

chk5

00
k

kA E= ∑
L(x0) = Lch y0 +A0

L(x1) = Lch y1 +A1

L(x2) = Lch y2 +A2

L(x3) = Lch y3 +A3

L(x4) = Lch y4 +A4

L(x5) = Lch y5 +A5

L(x6) = Lch y6 +A6

L(x7) = Lch y7 +A0

Example: BEC

111

0
0
?
0
0
0
?
0

chk0

chk1

chk2

chk3

chk4

chk5

1-Pq

1-Pq

Y0

Y1

X0

X1

?

Pq

Pq

()
0

1

0 ?
y Y

L y y
y Y

+∞ =
= =
−∞ =

x0

x1

x2

x3

x4

x5

x6

x7

Example: BEC

 Check equations calculate extrinsic information

 Variable check

112

0
0
?
0
0
0
?
0

chk0

chk1

chk2

chk3

chk4

chk5

x0

x1

x2

x3

x4

x5

x6

x7

() () () ()1 2 5
2 2 2 2 0a e e eL x L x L x L x= + + = () () ()5 1 2

2 2 2e e eL x L x L x= + = +∞

() () () ()3 4 5
6 6 6 6 0a e e eL x L x L x L x= + + = () () ()5 3 4

6 6 6e e eL x L x L x= + = +∞

()1
2 0 4 5() () ()eL x L x L x L x+ += = +∞

()2
2 0 3 5() () ()eL x L x L x L x+ += = +∞

()3
6 1 3 7() () ()eL x L x L x L x+ += = +∞

()4
6 1 4 7() () ()eL x L x L x L x+ += = +∞

()5
2 1 6 7() () () 0eL x L x L x L x+ += =

()5
6 1 2 7() () () 0eL x L x L x L x+ += =

() () ()1 1 1
0 4 5 0e e eL x L x L x= = =

0

0+∞
0+∞

0

+∞
+∞

0

113

Irregular LDPC-Codes

 Properties:
 Generalization of regular LDPC codes
 Lower error rates, i.e., better performance
 Irregular number of ones per column and per row
 Variable nodes of different degrees
 Check nodes of different degrees

 Example:
1 0 0 1 1 1 0 0
1 0 1 0 1 1 0 0
1 1 1 1 0 1 0 0
0 1 0 1 0 0 1 1
1 1 0 1 1 0 1 1
1 1 1 1 0 0 1 1

 
 
 
 

=  
 
 
 
 

H

x0

x1

x2

x3

x4

x5

x6

x7

chk0

chk1

chk2

chk3

chk4

chk5

114

Irregular LDPC-Codes

 Irregular number of ones per column and per row:
 i : proportion of left (variable) nodes of degree i
 ri : proportion of right (check) nodes of degree i

 In example:
 3 = 5 / 8 4 = 1 / 8 5 = 2 / 8
 r4 = 3 / 6 r5 = 1/ 6 r6 = 2 / 6

 Proportions of edges:
 λi : proportion of edges incident to left nodes of degree i
 ri : proportion of edges incident to right nodes of degree i

 In example:
 l3 = 15 / 29 l4 = 4 / 29 l5 = 10 / 29
 r4 = 12 / 29 r5 = 5 / 29 r6 = 12 / 29

x0

x1

x2

x3

x4

x5

x6

x7

chk0

chk1

chk2

chk3

chk4

chk5

115

Irregular LDPC-Codes

 LDPC codes are optimized via Density Evolution or EXIT analysis
 Probability density functions describing the distribution of check and variable nodes

in a parity check matrix
 Specific codes can be found via random code generation following these distributions
 PDFs will only be nearly fulfilled due to the finite number of checks and variables
 Quality may vary in such an ensemble of codes due to random generation

 Example: Rc=1/2 LDPC Code with n=4096 and k=2048
 Variable node distribution:

 Check node distribution

Degree 2 3 6 7 20

PDF 0.48394942887 0.29442753267 0.29442753267 0.074055964589 0.062432620582

Number 1986 1202 349 303 256

Degree 8 9

PDF 0.74193548387 0.25806451612

Number 1850 529

116

0 0.5 1 1.5 2 2.5 3
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Irregular LPDC
Regular LPDC

IR LDPC EnsembleWaterfall Region

Error Floor

Simulation Results
 Irregular and regular

LDPC code
 IR as previous slide
 Regular: n=4096, k=2048

 3 ones in a column
 Random generation

 Performance
 Irregular better in

waterfall region
 Error floor depends on n
 lower error floor

possible
 Remarks

 Regular codes are
easier to attain

Eb/N0 in dB

BE
R

BER Performance of LDPC Code
 Number info bits

k = 9507

 Code word length
N = 29507

 Code rate
RC = 0.322

0 1 2 3 4 5 6

10-4

10-3

10-2

10-1

100

#1

#5#10

#15

Eb=N0 in dB

BE
R

117

	Channel Coding 2
	Outline Channel Coding II
	Chapter 1. Concatenated Codes
	Introduction
	Serial and Parallel Code Concatenation
	Interleaving
	Interleaving
	Interleaving
	Serial Code Concatenation:	 Direct Approach
	Serial Code Concatenation:	Product Codes
	Serial Code Concatenation:	Examples of Product Codes
	Parallel Code Concatenation: Modified Product Codes
	Parallel Code Concatenation:	Examples
	Union Bound on Bit Error Rate for Product Codes
	Parallel Code Concatenation:	Turbo Codes
	Potential of Turbo Codes
	Influence of Constituent Codes
	Influence of Constituent Codes
	Example of Turbo Code with 2 Codes (Lc = 3), Rc = 1/2
	Example of Turbo Code with 2 Codes (Lc = 3), Rc = 1/2
	Example of Turbo Code with 2 Codes (Lc = 5), Rc = 2/3
	LTE Turbo Code with 2 Codes (Lc = 4)
	Influence of Interleaver
	Distance Properties of Turbo Codes: Definitions
	Distance Properties of Turbo Codes: Uniform Interleaver
	Distance Properties of Turbo Codes: Results
	Distance Properties of Turbo Codes
	Analytical Error Rate Estimation of Turbo Codes
	Foliennummer 29
	Decoding of Concatenated Codes
	Decoding of Concatenated Codes
	Log-Likelihood-Ratio
	LLR for a Memoryless Channel
	LLR for a Memoryless Channel
	LLRs for BSC and BEC
	Relation between LLRs and Probabilities (1)
	Relation between LLRs and Probabilities (2)
	L-Algebra
	L-Algebra
	General Approach for Soft-Output Decoding
	General Approach for Soft-Output Decoding
	General Approach for Soft-Output Decoding
	General Approach for Soft-Output Decoding
	Soft-Output Decoding of Repetition Codes
	Soft-Output Decoding using the Dual Code
	Soft-Output Decoding of (4,3,2)-SPC using the Dual Code
	Soft-Output Decoding for (4,3,2)-SPC-Code
	BCJR Algorithm for Convolutional Codes
	BCJR Algorithm for Convolutional Codes
	BCJR Algorithm for Convolutional Codes
	BCJR Algorithm for Convolutional Codes
	Calculation in Logarithmic Domain
	Calculation in Logarithmic Domain: Jacobi Logarithm
	Calculation in Logarithmic Domain: Jacobi Logarithm
	Foliennummer 55
	General Concept for Iterative Decoding
	Turbo Decoding for (24,16,3) Modified Product Code (1)
	Turbo Decoding for (24,16,3) Modified Product Code (2)
	Turbo Decoding for (24,16,3) Modified Product Code (3)
	Turbo Decoding for (24,16,3) Modified Product Code (4)
	Turbo Decoding for Parallel Concatenated Codes
	Simulation Results for Modified Product Codes (7,4,3)-Hamming Codes
	Simulation Results for Modified Product Codes �(15,11,3)-Hamming-Codes
	Simulation Results for Modified Product Codes �(31,26,3)-Hamming-Codes
	Simulation Results for Modified Product Codes
	Simulation Results for Turbo Codes (Lc = 3)
	Simulation Results for Turbo Codes (Lc = 3)
	Turbo Decoding for Serially Concatenated Codes
	Comparison of Serial and Parallel Concatenation
	Repeat Accumulate Code by ten Brink
	Repeat Accumulate Code by Stephan ten Brink
	EXtrinsic Information Transfer Chart��(EXIT-Charts)�
	Mutual Information for Turbo Decoder
	Mutual Information for Single Decoder
	General Concept of Iterative „Turbo“ Decoding
	Distribution of Extrinsic Information
	Analytical Model for the A-Priori Information
	Motivation for Modeling A-Priori Information
	Mutual Information of A-Priori Information and Info Bits
	Mutual Information of Extrinsic Information and Info Bits
	Measurement of the Mutual Information
	Dependency of Mutual Information at Decoder Input and Output
	Behavior of different Convolutional Codes
	Comparison of MAP and Max-Log-MAP
	EXtrinsic Information Transfer (EXIT) Charts
	EXIT Charts for Serial Concatenation
	EXIT Charts for Serial Concatenation
	EXtrinsic Information Transfer (EXIT) Charts
	EXtrinsic Information Transfer (EXIT) Charts
	Code Design for Half-Rate Repeat-Accumulate Code
	Foliennummer 91
	Bit-Interleaved Coded Modulation (BICM)
	Soft-Output Demapping
	Soft-Output Demapping
	Soft-Output Demapping for 16-QAM
	System Model for BICM
	Selected Bit-Mappings for 8-PSK
	EXtrinsic Information Transfer Charts
	Bit Error Rates
	Foliennummer 100
	LDPC Codes	
	Introduction
	Regular LDPC-Codes
	Regular LDPC-Codes
	Factor Graph
	Factor Graph
	Decoding with the Sum-Product Algorithm
	Decoding with the Sum-Product Algorithm
	Decoding with the Sum-Product Algorithm
	Decoding with the Sum-Product Algorithm
	Example: BEC
	Example: BEC
	Irregular LDPC-Codes
	Irregular LDPC-Codes
	Irregular LDPC-Codes
	Simulation Results
	BER Performance of LDPC Code

