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Outline Channel Coding II

▪ 1. Concatenated Codes

▪ Serial Concatenation

▪ Parallel Concatenation (Turbo Codes)

▪ Iterative Decoding with Soft-In/Soft-Out decoding algorithms

▪ EXIT-Charts

▪ 2. Trelliscoded Modulation (TCM)

▪ Motivation by information theory

▪ TCM of Ungerböck, pragmatic approach by Viterbi, Multilevel codes

▪ Distance properties and error rate performance

▪ Applications (data transmission via modems)

▪ 3. Adaptive Error Control

▪ Automatic Repeat Request (ARQ)

▪ Performance for perfect and disturbed feedback channel

▪ Hybrid FEC/ARQ schemes



3

Channel Coding I:

▪ Different schemes for error detection and error correction

▪ Adding redundancy so that only part of all possible sequences are transmitted

▪ Distance between valid sequences is increased

▪ Due to added redundancy error detection or correction is possible

Motivation for Coded Modulation:

▪ The bandwidth per user of several channels is restricted (e.g. 3 kHz telephone)

▪ Uncoded BPSK provides small data rate – additional coding would further 

reduce the transmission rate 

→ impossible to achieve reliable communication with high data rates

One Possible Solution:

▪ Coded Modulation: Combining channel coding and higher order 

modulation schemes
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Chapter 2. Trelliscoded Modulation

▪ Linear Digital Modulation

▪ Basics and Minimum Euclidean distance

▪ Spectral efficiency and error rate performance of linear modulation schemes

▪ Principle of Coded Modulation

▪ Basic approach

▪ Capacity of AWGN Channel for Different Linear Digital Modulation Schemes

▪ TCM by Ungerböck

▪ First approaches towards Trelliscoded Modulation

▪ Set-Partitioning

▪ Principal structure of TCM encoders and optimal codes of Ungerböck

▪ ML-Decoding with Viterbi-Algorithm 

▪ Analytical Approximation of Bit Error Probability

▪ Pragmatic Approach by Viterbi 

▪ Multilevel Codes by Imai

▪ TCM for telephone modems
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Structure of Digital Transmission System

udigital

source

cchannel

encoder

xsignal

mapper

Digital Source comprises analog source and source coding, delivers 

digital data vector u = [u1 u2 … uk] of length k at symbol clock Ts

Channel encoder adds redundancy to u so that errors in 

c = [c0 c1 … cm-1] can be detected or even corrected

• Channel encoder may consist of several constituent codes

• Code rate: Rc = k / m

signal mapper assigns m-bit vector c onto 

one out of M = 2m symbols x
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Channel decoder: 

• Estimation of u given the received vector ĉ

• ĉ doesn’t necessarily consist of hard quantized values {0,1}

• Since encoder may consist of several parts, decoder may also consist of several modules

Structure of Digital Transmission System

udigital

source

cchannel

encoder

xsignal

mapper

y

discrete 

channel

signal

demapper

ĉ
digital

sink

û
channel

decoder
signal demapper represents 

counterpart for signal mapper

Discrete channel: comprises

• analog part of modulator 

• physical channel

• analog part of demodulator
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Linear Digital Modulation: Minimum Euclidean Distance
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Linear Digital Modulation: Gray Mapping
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4-QAM, 4-PSK (QPSK) Gray Mapping: binary 

representations of 

neighboring symbols 

differ in only one bit
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Linear Digital Modulation: Impulse Shaping

▪ Bandwidth efficiency depends on modulation size and impulse filter gr(t)

▪ Symbol rate rs leads to symbol duration Ts = 1/rs

▪ Bandwidth

▪ Raised Cosine Filter: parameter r

▪ Impulse response

▪ Transfer function
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Linear Digital Modulation: Impulse Shaping

▪ Ideal low-pass filter (r = 0)

▪ Cosine face (r = 1)
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Linear Digital Modulation: BPSK and AWGN Channel
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Linear Digital Modulation: QPSK and AWGN Channel
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Linear Digital Modulation: Error Rate Performance

▪ Maximum likelihood criterion for symbol detection

▪ Symbol error probability

▪ Error probability is dominated by minimum Euclidean distance 0

▪ M-PSK:

▪ M-ASK: M-QAM:

Minimum distance decreases and error rate increases with growing M !

( )
2

|
ˆ argmax argmini Y X i i i

XX
x p y x X y X




 = = = −

 2 2
Pr , ,s i i i i i i in i iP y x y x x x x x  = −  −   A

( )0 2 sin / /s sM E T =  

0 2

12

1

s

s

E

M T
 = 

−
0

6

1

s

s

E

M T
 = 

−



14

Linear Digital Modulation: Error Rate Performance

▪ Error probability for M-ASK

▪ Error probability for M-QAM (equivalent to squared       -ASK)

▪ Error probability for M-PSK
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sP

0/ in dBsE N

symbol error probability

0 5 10 15 20 25
10

-6

10
-4

10
-2

10
0

BPSK  

QPSK  

8-PSK 

16-PSK

16-QAM

Linear Digital Modulation: Symbol Error Probability
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bP
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▪ Increase the number of transmit symbols from 𝑀 to ෩𝑀

▪ Instead of 𝑚 bits we transmit now ෥𝑚 bits with each symbol at same bandwidth

▪ The additional ෥𝑚 −𝑚 bits can be generated by a channel code! 

▪ Uncoded QPSK transmission

▪ QPSK transmission with rate 2/3 channel coding

Principle of Coded Modulation (1)

u
digital

source

c x
QPSK

mapper

S     

P

u
digital

source

c
channel

encoder

x

QPSK

mapper

S     

P
3-2-

converter

rb = 9.6 kbit/s rs = rb / m = 4800 symbols/s = 4.8 kbaud

rb = 9.6 kbit/s rs = rc / m = 7.2 kbaudrc = rb / Rc = 14.4 kbit/s

rb : information rate

rc : data rate of code bits

rs : symbol rate
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▪ Combination of channel encoder and mapper

▪ Channel encoder adds redundancy without increasing bandwidth

▪ Channel encoder and mapper merge

▪ Question: How much can we gain from combining channel coding and 
modulation?

▪ Example: 

▪ Convolutional code with Lc = 7 and Rc = 2/3 gains 6 dB

▪ 8-PSK loses roughly 5.3 dB compared to QPSK with respect to Es/N0

▪ Total gain amount only 6 dB - 5.3 dB = 0.7 dB

▪ Is this all???

Principle of Coded Modulation (2)

u
digital

source

c
channel

encoder

x
8-PSK

mapper

S     

P

y

discrete

channel

rb = 9.6 kbit/s rs = 4.8 kbaud/src = 14.4 kbit/s
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Capacity of AWGN Channel for Different Linear Digital Modulation 

Schemes

▪ Channel capacity for equip.
discrete input, continuous 
output alphabet for AWGN

▪ Capacity C vs. Es /N0

▪ Capacity increases with M

▪ For decreasing SNR (Es /N0 → -) capacity 
tends to zero

▪ Asymptotically (Es /N0 → ) capacity tends 
to m = ld(M), i.e. spectral efficiency 

▪ Continuous Gaussian inputs achieve 
maximum capacity

▪ 16-QAM offers higher capacity than 16-
PSK as signal space is used more 
efficiently – asymptotically the same 
spectral efficiency  = 4 bit/s/Hz is achieved 
of course
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Capacity of AWGN Channel for Different Linear Digital Modulation 

Schemes

▪ Capacity C vs. Eb /N0

▪ p(y|x) depends on Es /N0 → implicit equation for Rc = C

▪ No error-free communication possible for

Eb/N0 < -1.59 dB

▪ For large SNR the capacity of all schemes 

equals corresponding 

▪ Comparison: (e.g.  = 2 bit/s/Hz)

▪ Error-free transmission with uncoded

QPSK requires Eb/N0 > 9.5 dB

▪ Rate 2/3 coded 8-PSK needs only 

Eb/N0 > 2.5 dB → gain of 7dB

▪ Doubling the modulation size is sufficient

▪ Doubling size

▪ Codes of rate Rc = m/(m+1) = k/(k+1) are used
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Principle of Coded Modulation (3)

▪ Combination of channel encoder and mapper

▪ Now detection of symbol sequences

▪ Maximum likelihood approach: 

▪ Minimum squared Euclidean distance should be maximized (for AWGNC)
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First Approaches Towards Trelliscoded Modulation

▪ Uncoded QPSK ( = 2 bit/s/Hz)

▪ All symbol sequences are possible

▪ Minimum squared Euclidean distance between 2 sequences 

is determined by minimum distance between 2 QPSK symbols:
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▪ Trelliscoded 8-PSK (1 memory → 2 states)

First Approaches Towards Trelliscoded Modulation
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▪ Trelliscoded 8-PSK (4 states)

First Approaches Towards Trelliscoded Modulation
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▪ Trelliscoded 8-PSK (8 states)

First Approaches Towards Trelliscoded Modulation

 Minimum squared Euclidean distance

( ) ( ) ( )2 2 2 2 20,6 0,7 0,6 4.586f ef e e ed d d d = = + + =

 No parallel branches

( )

2

2

0

2.293 3.6 dBˆ
QPSK

f



= = =


 Gain:

0246

1357

2064

3175

4602

5713

6420

7531

first symbol at each 

node corresponds 

to first branch, 

second symbol to 

second branch, …

0

2

4
6



26

Some Remarks about TCM

▪ Inserting memory leads to significant gains

▪ Not all symbol combinations can occur in a sequence 
→ increases distance between sequences

▪ Increasing the number of states leads to an improved performance, but also to 
a larger complexity for the decoder

▪ Calculated gain is realized only asymptotically (large SNR)

▪ Question: 

▪ Is there a systematic way to construct optimum TCM-Codes?

▪ Answer: 

▪ No. Optimum structures have been found for AWGN by computer search.

▪ But, there are some heuristic rules that help us to find good codes (without any 
guarantee to find the best code) 
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Ungerböck’s Set-Partitioning

▪ Mapping by set partitioning

▪ Aim: optimizing the distance properties of TCM codes

▪ Parallel branches should be assigned to symbols with large Euclidian distance

▪ Common branches are separated by the trellis structure 

→ can be assigned to symbols with smaller Euclidian distance

▪ Strategy for a successive separation of the signal space

▪ Start with complete signal space 𝐁 = Ain

▪ Separate B into 2 subsets 𝐁0
(1)

and 𝐁1
(1)

so that the Euclidian distances between the 

symbols of one subset is increased: 

𝐁 → 𝐁0
(1)
, 𝐁1

(1)

▪ Repeat separation of 𝐁0
(1)

→ 𝐁0
(2)
, 𝐁2

(2)
and 𝐁1

(1)
→ 𝐁1

(2)
, 𝐁3

(2)
to increase the 

distance within the subsets

▪ Repeat separation of all generated subsets until the subsets contain only one 

symbol → ෥𝑚 = 𝑚 + 1 partitioning steps
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Ungerböck’s Set-Partitioning for 8-PSK
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Ungerböck’s Set-Partitioning for 16-QAM
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Principle Structure of TCM Encoders

▪ Spectral efficiency of TCM with M = 2m+1: m bits/s/Hz

▪ Bits u1 ... uk are convolutionally encoded 

→ encoded bits c0 ... ck determine symbol coset

▪ Bits uk+1 ... um remain uncoded and determine symbol within coset

▪ Weak uncoded bits are protected by well separated symbols in cosets

30
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=
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symbol mapper
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k = m : Rc = m/(m+1)

all info bits are 

encoded

k = 1 : Rc = 1/2

m-1 uncoded bits
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Ungerböck’s Set-Partitioning

▪ For AWGN the code construction should maximize the minimum Euclidian 

distance between sequences 

→ combined optimization of convolutional code and mapping

▪ Guidelines for code construction of Ungerböck

▪ If there are uncoded bits, they should be assigned to the last partitioning steps, i.e. 

they determine a symbol of  a certain subset!

(uk+1, …, um) determine symbol within cosets of partitioning step m-k

▪ Branches arriving at the same state or leaving the same state should be assigned to 

symbols of the same subset!

▪ All symbols should occur equally likely!

▪ These guidelines do not lead to unique optimum codes, but they reduce the 

space to search in!

▪ In practice recursive systematic codes (RSC) are used mostly
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Systematic TCM Encoder with Recursive Shift Register
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1, 2cLh − , 2cm Lh − 1,1h ,1mh

0,0 1h =0, 1 1
cLh − =

,0 0h =
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Optimal Codes of Ungerböck for 8-PSK

number of 
states k h0 h1 h2 

2

f  
G8-PSK/QPSK 

[dB] 

gain at 
510bP −=  [dB] 

4 1 5 2  4.000 3.01 2.4 

8 2 11 02 04 4.586 3.60 2.8 

16 2 23 04 16 5.172 4.13 3.0 

32 2 45 16 34 5.758 4.59 3.3 

64 2 103 030 066 6.343 5.01 3.6 

128 2 277 054 122 6.586 5.17  

256 2 435 072 130 7.515 5.75  

 

octal representation 

of coefficients hi▪ Parallel branches dominate for 4 states (k = 1)

▪ For more than 4 states no parallel branches occur anymore (k = 2) 

▪ Minimum squared Euclidean distance (→ gain) increases with number of states
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Optimal Codes of Ungerböck: 2 states, 8-PSK

0

4
5

1

7

3

6
2

0

1

0

1

(u 1,u 2) state successive state (c 0,c 1,c 2) x

00 0 0 000 0

01 0 0 001 4

10 0 1 010 2

11 0 1 011 6

00 1 0 100 1

01 1 0 101 5

10 1 1 110 3

11 1 1 111 7 8-PSK

natural

mapping

(c0, c1, c2)


 = c0 20+c1 21+c2 22

c0

u1

u2

c1

c2

x

T

▪ parallel branches are assigned to opposite 

symbols → (0,4), (2,6) 

▪ which of these symbols is transmitted is 

determined by the uncoded bit c2

▪ Coded bits c0 and c1 determine the symbol 

subset
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Optimal Codes of Ungerböck: 4 states, 8-PSK

8-PSK

natural

mapping

(c0, c1, c2)


 = c0 20+c1 21+c2 22

c0

u1

u2

c1

c2

x(l )

TT

( ) ( )0 0,2 0,1 0,0 1 0 1 5h h h= = =h

( ) ( )1 1,2 1,1 1,0 0 1 0 2h h h= = =h
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Optimal Codes of Ungerböck: 8 states, 8-PSK

8-PSK

natural

mapping

(c0, c1, c2)


 = c0 20+c1 21+c2 22

c0

u1

u2

c1

c2

x(l )

TTT

( ) ( )

( ) ( )

( ) ( )

0 0,3 0,2 0,1 0,0

1 1,3 1,2 1,1 1,0

2 2,3 2,2 2,1 2,0

1 0 0 1 11

0 0 1 0 02

0 1 0 0 04

h h h h

h h h h

h h h h

= = =

= = =

= = =

h

h

h
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Optimal Codes of Ungerböck for 16-PSK

number of 
states 

k h0 h1 h2 2

f  
G16-PSK/8-PSK 

[dB] 
gain at 

510bP −=  [dB] 

4 1 5 2  1.324 3.54 2.3 

8 1 13 04  1.476 4.01 2.7 

16 1 23 04  1.628 4.44 2.9 

32 1 45 10  1.910 5.13 3.2 

64 1 103 024  2.000 5.33 3.5 

128 1 203 024  2.000 5.33  

256 2 427 176 374 2.085 5.51  

 

▪ 4 parallel branches exist up to 128 states (k = 1)

▪ Nonparallel branches dominate up to 32 states; smaller distance than parallel 

branches!

▪ Parallel branches dominate for 64 and 128 states (k = 1)

▪ For more than 128 states, only 2 parallel branches exist (k = 2)
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ML-Decoding with Viterbi-Algorithm

▪ Maximum-Likelihood Decoding: Determine that symbol sequence ො𝐱 with 

minimum Euclidian distance to the received sequence y

demodulation and decoding are no longer separated 

→ joint demodulation and decoding → TCM decoding

▪ Efficient realization for ML Decoding is given by the Viterbi-Algorithm

▪ The difference in contrast to decoding of convolutional codes is given by the metric

▪ If parallel branches occur, only the best branch is considered

▪ Squared Euclidian distance

▪ For PSK modulation

2
ˆ arg min= −

x
x y x

( ) ( ) ( ) ( )

 ( )

* 2 22 * *

2 2 *

, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) 2 Re ( ) ( )

ed y x y x y x y x y x

x y x y

= −  − = −  − +

= + − 

 



x y

ˆ argmax ( , )=
x

x x y( )  *, Re ( ) ( )x y = x y
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Analytical Approximation of Bit Error Probability

▪ Recall: Calculation of bit error rate of convolutional codes by distance spectrum

▪ Distance spectrum

▪ Union bound for bit error rate

▪ Number of non-zero info bits for all sequences with Hamming weight d

▪ Notice: Convolutional codes are linear, whereas TCM are nonlinear due to the 

mapping of vector c to transmit symbols x

▪ Comparison of all sequences with all-zero sequence is not sufficient

▪ All pairs of sequences have to be considered → larger effort

( ) , ,, , w d l

w d l

w d l

T W D L T W D L= 

0

1
erfc

2

b
b d d d c

d d

E
P c P c d R

N

 
  =    

 
 

, ,d w d

w

c w T= 

L = sequence length

W = weight of uncoded input sequence

D = weight of coded output sequence
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Analytical Approximation of Bit Error Probability

▪ Assumption: Optimal maximum likelihood decoding by Viterbi algorithm

▪ Error probability of sequence x:

▪ Pairwise Error Probability (PEP):

( )
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( ) ( )

( , )
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2 4 / s
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N T
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 
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 ( , ) ( | ) ( | )P P = x x y y x y xD

with

with

equality “=“ holds for disjoint sets ( , )x xD
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Analytical Approximation of Bit Error Probability

▪ Pairwise error probability:

▪ Error Probability of sequence x:

▪ Not only Hamming distance (number of different symbols in x and x’), but the 

Euclidian distance between the symbols are of importance 

▪ Simplification of the probability by using the approximation
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Analytical Approximation of Bit Error Probability

▪ Error Probability of sequence x is bounded by:

▪ Only the last term depends on the Euclidian distance between x and x’

→ application of distance spectrum is again possible
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2
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Analytical Approximation of Bit Error Probability

▪ Total error probability:

▪ IOWEF of TCM encoder:

▪ Considers difference of all sequences and their probability P(x)

▪ w(x,x’) denotes numbers of bit errors for x→x’
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Analytical Approximation of Bit Error Probability

▪ Total error probability using distance spectrum

▪ Bit Error Probability

▪ Number of differing information bits w(x,x’) between x and x’ has to be considered
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Analytical Approximation of Bit Error Probability

▪ Performance improves with increasing number of states → decoding effort grows exponentially

▪ Gain of 3.6 dB for 64 states is still 3.4 dB lower than promised by capacity

▪ Although theoretical gains are not achieved, strong performance improvements are obvious
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Pragmatic Approach by Viterbi

▪ Modern communication systems require adjustment with respect to time variant 

channel properties and adaptivity with respect to requested data rates

→ flexibility and adaptivity are required

▪ Drawback for optimal codes of Ungerböck’s

▪ Switching between constellations with different spectral efficiencies  depending on 

the requirements is necessary

▪ TCM was optimized for each  and requires different shift register structures and 

decoder (Viterbi)

▪ Pragmatic Approach by Viterbi (in general not optimal)

▪ Conventional half-rate NSC code with Lc=7 in combination with different alphabets

▪ =1 bit/s/Hz → QPSK: u1 is encoded → (c1, c0)

▪ =2 bit/s/Hz → 8-PSK: uncoded bit u2 selects upper/lower signal set 

▪ =3 bit/s/Hz → 16-PSK: uncoded bits (u3, u2) select quadrant
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Pragmatic Approach by Viterbi
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Pragmatic Approach by Viterbi

▪ =1 bit/s/Hz → QPSK: u1 is encoded → (c1, c0)

▪ =2 bit/s/Hz → 8-PSK

▪ u1 is encoded → (c1, c0) → same encoder / decoder structure as =1 bit/s/Hz

▪ uncoded bit u2 selects upper signal set (000,001,011,010) or lower signal set 

(100,101,111,110)

▪ Code bits (c1, c0) determine symbol with signal set

▪ 2 parallel branches to and from each state in Trellis diagram

▪ =3 bit/s/Hz → 16-PSK

▪ uncoded bits (u3, u2) select quadrant

▪ Code bits (c1, c0) determine symbol with signal set → 4 parallel branches

▪ Very flexible structure, as varying spectral efficiency effects only number of 

uncoded bits but not encoder / decoder structure

▪ Only small performance drawback in comparison to optimum TCM codes, e.g., 

pragmatic code for 8-PSK results in loss of 0,4 dB at Pb=10-5



Multilevel Codes by Imai: Insights from Information Theory

▪ Bijective mapping of m = log2(M) coded bits c1, …, cm onto symbol x

▪ Chain rule of mutual information

▪ Interpretation:

▪ Successive decoding of bits is optimal (reaches capacity)

→ Independent encoding of bit-levels

▪ Already decoded bits have to be provided to successive decoders as a priori 

information

▪ Order of detection can be arbitrary, but determines bit-level capacities 

▪ Each decoding stage has to be error-free 

→ capacity achieving codes in each bit-level required

49
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Multilevel Codes by Imai: Structure of Encoder

choosing symbol in coset

choosing coset

choosing coset

x

encoder 1

𝑅𝑐,1 ≤ 𝐼1

c1

c2

cm

u2

u1

um

encoder 2

𝑅𝑐,2 ≤ 𝐼2

encoder m

𝑅𝑐,𝑚 ≤ 𝐼𝑚

S

P

u

𝐼1 = 𝐼 𝑐1; 𝑦

𝐼𝑚 = 𝐼 𝑐𝑚; 𝑦 𝑐1, … , 𝑐𝑚−1

𝐼2 = 𝐼 𝑐2; 𝑦 𝑐1
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Multilevel Codes by Imai: Structure of Encoder

▪ Especially for fading channels the application of Imai’s Multilevel codes (MLC) 
results in performance improvements

▪ Encoder structure:

▪ No strict differentiation between coded and uncoded bits

▪ Serial/Parallel conversion of information sequence

▪ Different encoder (Lc, Rc) for each S/P output (branch), e.g. Rc = 1

▪ Possible strategy for encoder design

▪ Separation of signal space by Ungerböck’s Set-Partitioning

▪ Due to increased Euclidian distance within each subset, the equivalent channel 
capacity (bit-level capacity) of each partitioning step increases

▪ Each branch of the MLC decides about one partitioning step

▪ Choose the code rate of each branch according to the equivalent channel capacity

▪ Due to increased distance, the capacity increases with each partitioning step
→ i.e. codes become weaker with partitioning steps 
→ e.g. uncoded bits in last partitioning steps



Multilevel Codes by Imai: Optimizing the Encoder for 8-PSK

▪ 1st partitioning step generates 2 QPSK constellation each with capacity C(QPSK)

▪ Code bit c1 selects partitioning sets (not symbol within partitioning set)

▪ Capacity of 1st step: 𝐼1 = 𝐶(1) = 𝐶(8−PSK) – 𝐶(QPSK)

▪ 2nd partitioning step generates 4 BPSK constellations each with capacity C(BPSK)

▪ Capacity of 2nd step: 𝐼2 = 𝐶(2) = 𝐶(QPSK) – 𝐶(BPSK)

▪ With 𝐼3 = 𝐶(3) = 𝐶(BPSK) we get 𝐶(1) + 𝐶(2) + 𝐶(3) = 𝐶(8 − 𝑃𝑆𝐾)
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Multilevel Codes by Imai: Optimizing the Encoder for 16-PSK
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Multilevel Codes by Imai: Optimizing the Encoder for 16-QAM
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Multilevel Codes by Imai: Iterative Decoding
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TCM for telephone modems Standards from ITU (CCITT)

▪ V.26: 1962 developed, 1968 standardized, uncoded 4-PSK, 2.4 kbit/s or 1.2 kbaud, 

fixed analog equalizer (designed for average channel profile)

▪ V.27: 1967, uncoded 8-PSK, 4.8 kbit/s or 1.6 kbaud, dispersive channel due to higher bandwidth

→ system becomes more sensitive, adaptive analog equalizer

▪ V.29: uncoded 16-QAM, 9.6 kbit/s or 2.4 kbaud, system becomes even more sensitive

→ digital equalizer at symbol rate 1/T

Since then, channel coding could be applied because technology becomes able to handle the problem 

of relative complex decoding algorithms for TCM.

▪ V.32: 1981, 32-QAM TCM (rotational invariant by Wei), 14.4 kbit/s or 3.6 kbaud,

digital fractional tap spacing equalizer (over sampling)

▪ V.33: 128-QAM TCM, 14.4 kbit/s or 2.4 kbaud, 64-QAM TCM, 12 kbit/s or 2.4 kbaud

▪ V.34: 960-QAM TCM, adaptation to channel (channel estimation required), code rates 

Rc=2/3 (16 states), Rc=3/4 (32 states), Rc=4/5 (64 states),

B = 3.2 kHz, 2.4 kbit/s ... 28.8 kbit/s
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Data Rates of Communication Systems over 

Copper Telephone Lines

▪ Actual data rate depends strongly on distance to telephone switch

Transmission System Bandwidth Data rate

Analog telephone (POTS) 300 Hz – 3.4 kHz
up to 56 kbit/s 

(typically 4,5 kByte/s – 5 kByte/s)

ISDN 0 Hz – 120 kHz
2 · 64 kBit/s data channel 

+ 16 kBit/s control channel

ADSL 

(ADSL-over-ISDN, Annex B)

U: 138 kHz – 276 kHz 

D: 276 kHz – 1.1 MHz

Upstream: 1 Mbit/s 

Downstream: up to 10 Mbit/s, 

ADSL2+ 

(ADSL-over-ISDN)

U: 138 kHz – 276 kHz 

D: 276 kHz – 2.2 MHz

Upstream: 1 Mbit/s

Downstream: up to 24 Mbit/s, 


