
Efficient Coded Bit and Power Loading for

BICM-OFDM

Carsten Bockelmann, Dirk Wübben and Karl-Dirk Kammeyer
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Abstract—Adaptive coding and modulation is an important
topic considering future communication systems. Orthogonal
Frequency Division Multiplexing (ODFM) has been identified as
a promising technique, which offers the possibility for further
enhancements by bit and power loading schemes. Commonly,
channel coding has not been considered in the optimization of
such algorithms. It is, however, an important component used in
nearly every communication system. In this paper we propose a
new scheme to adapt code rate, modulation and transmit power
by solving a convex optimization problem based on a bisection
approach in order to enhance the frame error rate at a fixed
target rate.

I. INTRODUCTION

The adaptation of communication systems to the current

channel state is a crucial step towards higher spectral ef-

ficiencies and more robust systems. Obviously, the whole

system has to be considered in the optimization of common

parameters like modulation and power, which includes also the

applied channel coding. This, however, has been neglected in

previous works, e.g., [1]–[3]. Only recently some attention has

been given to the consideration of channel coding in bit and

power loading algorithms with respect to the capacity of bit

interleaved coded modulation systems (BICM), e.g., [4]–[6].

Still, the information theoretical measure capacity does not

describe the performance of coded systems completely and

only holds for perfect capacity achieving codes. To this end,

we propose an efficient extension to the approach of Krongold

et al. [1], which uses the bisection method to solve the

resulting convex optimization problem. Instead of analytical

error rate expressions the simulated AWGN performance of

a set of code and modulation combinations (modes) will be

used to form a look-up table describing the required signal-

to-noise-ratio (SNR) for a specific subcarrier rate. The codes

will be chosen from a common code family, e.g., convolutional

codes with a fixed constraint length, realizing different code

rates. Adapting the code rate additionally allows for higher

flexibility in comparison to fixed code rate scenarios. A similar

approach has been proposed by Stiglmayr et al. [7], however,

solving a rate optimization problem formulated in terms of

the BICM capacity by linearization neglecting a finer grained

power control.

The remainder of this paper is organized as follows. The

system model used throughout the paper is introduced in
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Section II, in Section III the performance measure, which is

used in Section IV to obtain an optimization algorithm, is char-

acterized. In Section V performance results for several codes

are shown and compared to other known loading approaches.

Finally, in Section VI this paper is concluded.

Notation

In the following, vectors and sets are denoted by lower

case bold and calligraphic letters, respectively. Furthermore,

probabilities are denoted as P.NC

(

µ, σ2
)

describes a complex

Gaussian distribution with mean µ and variance σ2.

II. SYSTEM MODEL

We consider an equivalent baseband model of an OFDM

system with NC subcarriers assuming perfect synchronisation,

a sufficient guard interval (GI) and perfect knowledge of

the channel state information (CSI) at both transmitter and

receiver. Thus, the system can be described in frequency

domain as

yk = hk · √pk · dk + nk , (1)

where hk denotes the channel coefficient in frequency domain

on subcarrier k = 1, · · · , NC and pk, dk, nk and yk denote

the transmit power, the transmit symbol, the Gaussian noise

and the receive signal, respectively. The overall transmit power

is given by P =
∑NC

k=1 pk and the power of the noise nk ∼
NC(0, σ2

n) is fixed to σ2
n = 1. The NC frequency domain

channel coefficients are determined by

hk =

LF −1
∑

ℓ=0

h̃(ℓ)e−jΩkℓ , (2)

where the LF taps of the time domain channel are h̃(ℓ) ∼
NC(0, 1/LF ) and Ωk = 2π/NC (k − 1) denotes the k-th
normalized equidistant sampling frequency.

A. Modulation

Throughout this paper transmit symbols stemming from

M -QAM (
√

M -ASK) modulation alphabets A with binary

reflected gray mapping are considered. To each subcarrier k an

individual alphabet of cardinality Mk = |Ak| may be assigned.

Soft-Demapping via a-posteriori-probability (APP) detection

is used to supply soft information to the decoder.

As any square M -QAM can be represented by two
√

M -

ASK without loss, we will constrain the following descriptions
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Fig. 1. System Model of an adaptive BICM-OFDM system.

to ASK constellations. An expansion to QAM constellations

can easily be obtained by simply halving the power and rate

constraint while doubling the resulting powers and rates.

B. Coding

Fig. 1 shows the general system model including chan-

nel coding and interleaving. The applied coding scheme

uses a single forward error correction (FEC), which en-

codes the information bits of one OFDM symbol. Non-

systematic non-recursive convolutional encoders of rates RC ∈
{1/4, 1/3, 1/2, 2/3, 3/4} with constraint lengths LC ∈ {3, 7}
are considered.

In all cases, the code word length is fixed to the number of

bits in one OFDM symbol, leading to longer code words for

higher data rates. Thus, no time diversity is exploited. A BCJR

algorithm is used for soft-decoding and random interleaving

is applied.

III. CODED SYSTEM PERFORMANCE

The bit error rate performance of uncoded
√

M -ASK trans-

mission is a well known property, which can be described as

a function of the signal-to-noise ratio γ (SNR) by

Pb,
√

M−ASK =
2

log2 M

(

1 − 1√
M

)

erfc

(

√

3

M − 1
γ

)

.

(3)

Accordingly, the frame error rate (FER) given a certain frame

length LN - the number of channel uses - is defined as

Pf = 1 − (1 − P
b,
√

M−ASK
)LN log

2

√
M , (4)

which can be used to derive the SNR γ required to achieve a

given bit or frame error rate for a certain modulation. This

is the basis for many known bit loading algorithms, e.g.,

[1]. However, these results are limited to uncoded systems.

To capture the behavior of the whole system - including an

appropriate channel code - (3) and (4) are not sufficient.

One way to obtain a measure of quality is the simulated

performance of the coded system.

In order to characterize the SNR, which is necessary on a

subcarrier to achieve a given frame error rate performance,

simulations of a system with equivalent block length LN =
NC and AWGN noise are sufficient. The reasoning behind this

is, that given the SNR of a single subcarrier γk we assume

all symbols of the code word to have SNR γk. The error

rate performance of a specific code and modulation disturbed
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Fig. 2. FER vs. Eb/N0 comparison of some combinations of
√

M -ASK with

log2(
√

M) = 2, 3, 4 and convolutional codes RC ∈ {1/4, 1/3, 1/2, 2/3}
(left to right) with LC = 3. Circles denote modes with 1 bit/s/Hz. Frame
length has been chosen LN = 1024.

by AWGN at γk indicates, which mode may be chosen to

achieve some frame error rate constraint. Using this heuristic,

the overall error rate of an OFDM symbol with different SNRs

and properly chosen subcarrier modes can be assumed to fulfill

the error rate constraint.

Still, the AWGN assumption is optimistic in the sense,

that individual channel properties have been compensated

properly, but offers a good indication of the necessary SNR

at a specific data rate to support a target frame error rate

on a single subcarrier. Even though the applied channel code

could cope with SNR differences over subcarriers an ergodic

Rayleigh fading channel would lead to far too pessimistic

performance measures because of subcarriers with very low

SNRs. Such subcarriers will be compensated for in a perfect

adaptive system by the assignment of more power, a different

modulation and stronger coding.

Fig. 2 shows the FER results of Monte-Carlo simulations

for
√

M -ASK constellations up to
√

M = 24 and a variety of

code rates versus Eb/N0. It is quite clear, that only a subset

of combinations will actually be used due to the fact, that

at a fixed rate one code-modulation combination will lead to

the best performance, e.g., 4-ASK with a half rate code vs.

16-ASK with a quarter rate code achieve the same spectral

efficiency of 1 bit/s/Hz (circles) at a much lower Eb/N0. Based

on these simulation results, the system performance can be

characterized as will be shown in the next Section.

IV. POWER OPTIMIZATION

The problem statement we have to solve to enhance the error

rate performance is the well known optimization problem (5).

By this approach the transmit power P is minimized given

a target rate RTotal and frame error rate PTarget, where RTotal

denotes the overall target rate and a local code rate RC,k

together with the applied modulation
√

Mk define the bit rate



rk = log2(
√

Mk)RC,k on subcarrier k. Note, that the optimum

solution at one target FER scaled to the available transmit

powers can be used to show performance gains in terms of

the error rate.

minimize P =

NC
∑

k

pk

subject to
NC
∑

k

rk = RTotal and Pf < PTarget . (5)

The FER constraint PTarget leads to a description of the

interdependence of rate and power. The results in Section

III at the target FER lead to rate-power pairs defining po-

tential subcarriers modes. Accordingly, Fig. 3 shows all rate-

power points up to a maximum rate Rmax = 4 at a FER

PTarget = 10−2 found by Monte-Carlo simulations of the

AWGN performance of an equivalent system with frame length

NC and the analytical frame error rate expression for uncoded

ASK constellations (4). In a perfect adaptive system subcarrier

channel differences would be exploited or compensated by

assignment of power, modulation alphabet and code rate,

making the AWGN performance a good quality measure to

identify the SNR requirement γ̂i of a mode i.
The set of all rate-power points is therefore defined as S =

{(Ri, γ̂i)|fMi,RC,i
(pi) = Ptarget}, where fMi,RC,i

denotes the

frame error rate function, e.g., shown in Fig. 2, parametrized

by the transmission parameters and the power. The SNR γ̂i

for the real valued system is defined as

γ̂i = RC,i log2(
√

Mi)
Eb,i

N0/2
. (6)

where i is some index over all elements of the set S.
To solve (5) efficiently, convexity has to be ensured. To this

end, a convex set of rate-power points C ⊂ S has to be found,

which will be discussed in Section IV-A. Based on this, the

Lagrangian of (5) can be derived, allowing for an efficient

solution by the well known bisection approach discussed in

Section IV-B.

A. Convexity

As previously mentioned a convex set C is required, which

can be constructed by the convex hull of the whole set as

shown by the solid line in Fig. 3, where [8] has been used.

The resulting look-up table for rate Ri, SNR requirement γ̂i,

code rate RC,i and modulation size
√

Mi, where i is simply

some index over all elements of C, is shown in Table I.

All combinations of coding (or no coding) and modulation

resulting in a rate smaller than Rmax = 4 have been considered.

Note, that the relatively weak convolutional code is only

advantageous at lower rates, e.g., a combination of 16-ASK

with code of rate RC = 1/2 needs much more power, i.e.,

approx. 20.5dB, at a given error rate of PTarget = 10−2 than

simply using uncoded 4-ASK with approx. 17dB. Such a table

has to be generated once for a set of system parameters, i.e.,

NC , code ensemble and maximum allowed rate Rmax.

Based on such an easily storable look-up table the rate of

each OFDM symbol can be optimized. More specifically, the
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Fig. 3. Set of all rate-power points (x - coded modes; o - uncoded modes)
and its convex hull (solid line) at PTarget = 10−2; LN = 1024 and LC = 3.

TABLE I
LOOK-UP TABLE FOR LN = 1024, LC = 3 AND TARGET FER

PTARGET = 10−2

Rate γ̂ RC log2

√
M

0.25 0.88 0.25 1

0.33 1.17 0.33 1

0.50 1.84 0.50 1

0.67 2.83 0.67 1

0.75 3.40 0.75 1

1.50 16.36 0.75 2

2.00 47.49 1.00 2

2.25 66.22 0.75 3

3.00 202.57 1.00 3

4.00 825.51 1.00 4

look-up table has to return the mode with the greatest rate

still being feasible. Feasibility in the bisection approach, which

will be discussed shortly, is connected to the slope of the rate-

power curve, given by δR/δΓ̂ with R the vector of all rates

on the convex hull and Γ̂ the vector of the respective SNRs

γ̂.

B. Coded Bisection Approach

The stated optimization problem is well known and has been

solved for the uncoded case by several approaches. One very

efficient way to find the optimal solution given the Lagrangian

formulation of the convex optimization problem (5) is the

bisection approach, which has been applied to the uncoded

bit and power loading problem by Krongold et. al [1]. The

Lagrangian of (5) with respect to the equivalent minimization

problem is

J(λ) =

NC
∑

k=1

pk + λ

(

NC
∑

k=1

rk − RTotal

)

. (7)

Considering the unconstrained problem, i.e. neglecting RTotal,

each λ corresponds to an optimal power and rate distribution,

which minimizes the cost function J(λ). Accordingly, if



Require: look-up table L(η) → r, p
Plow = 0, Rlow = 0

Phigh = max(Γ)
NC
∑

k=1

1/|hk|2, Rhigh = NCRmax

loop

λ =
Rhigh−Rlow

Phigh−Plow
{rate-power slope}

for k = 1 to NC do

η = λ/|hk|2 {modify with channel}
rnew,k = L(η) {look-up best feasible rate}
pnew,k = L(η)/|hk |2 {get needed power}

end for

Rnew =
NC
∑

k=1

rnew,k {overall rate}

Pnew =
NC
∑

k=1

pnew,k {overall power}

if Rnew == Rhigh or Rnew == Rlow or Rnew == RTarget then

Set p = pnew and r = rnew
END LOOP

else if Rnew < RTotal then

Plow = Pnew, Rlow = Rnew

else
Phigh = Pnew, Rhigh = Rnew

end if

end loop

return Rates r and Powers p

Fig. 4. Coded Bisection approach to rate optimization

J(λ)/δrk = 0, ∀k, the condition

δpk

δrk

= −λ ∀k , (8)

has to be fulfilled, meaning that the optimal rates and powers

have to be chosen through that point on the rate-power curve

with slope λ.

A look-up table, which provides the rate and power at a

specific slope η = λ/|hk|2, has to be constructed from C to

calculate the optimal rates and powers on all subcarriers for a

given λ. The optimal λ∗, which minimizes the power taking

the target rate RTotal into account, can then be found iteratively.

The algorithm shown in Fig. 4 implements this procedure.

Starting with the two extremes Plow, Rlow (no power and rate)

and Phigh, Rlow (maximum power and rate), optimal powers pk

and rates rk are calculated via the look-up table. Following a

bisection approach, the new overall power and rate are then

used to calculate a new slope λ to the rate-power curve, solving

the rate and power distribution again until the optimal solution

is obtained.

The vectors p = [p1, . . . , pNC
]T and r = [r1, . . . , rNC

]T

in Fig. 4 collect all subcarrier powers and rates, respectively.

For each subcarrier k a power requirement pnew,k can be

determined by look-up of the modified slope η = λ/|hk|2.
The overall slope λ is then adjusted in the next iteration

by the newly calculated power and rate boundaries testing

these hypotheses until the overall power constraint is fulfilled

(for more details see [1]). The resulting rate vector r directly

defines modulation and code rate per Table I.

The look-up table L(η) is constructed such that the rate-

power pair (ri, pi) ∈ C with the greatest rate ri is chosen,
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Fig. 5. FER vs. Average subcarrier SNR for 1,2 and 3 bit/s/Hz (squares,
circles, crosses) for NC = 1024, LC = 3 and LF = 10; Optimization
parameters are PTarget = 10−2 and Rmax = 8.

where

η <
δR

δΓ

∣

∣

∣

∣

ri

(9)

is still fulfilled.

C. Code constraint

This bisection approach efficiently solves the convex op-

timization problem of the coded system by the previously

explained steps. However, the optimization results in local sub-

carrier code rates, which is not a common solution in today’s

wireless systems and beyond the scope of this paper. Instead, a

mean code rate is calculated to choose the code with the largest

available code rate R̄C fulfilling R̄C < 1
NC

NC
∑

k∈T
RC,k as the

outer code for one OFDM symbol, where T denotes the set of

all nonzero local code rates RC,k. Due to this solution, though,

the target rate will no longer be achieved. As the subcarrier

rates are changed by the application of a fixed global code

rate, an overall rate loss is introduced (stronger error protection

than required) violating the target rate constraint. A solution

to this problem is a two step process, fixing the code rate in

the first step followed by the optimization over a convex set

of all modes given this code rate.

V. RESULTS

As described in the previous section, the results were

obtained by optimizing the coded bit and power loading twice.

The first run with variable coding to obtain a mean code rate

and the second one to optimize the bit and power loading under

this fixed code rate. By this approach, the rate requirement

will be fulfilled at a previously chosen code rate R̄C . For

simulations a fully complex valued system model was applied.

Fig. 5 shows results for a system with NC = 1024
subcarriers at different target rates, using convolutional codes

of constraint length LC = 3. Optimization parameters have
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Fig. 6. FER vs. Average subcarrier SNR for 1,2 and 3 bit/s/Hz (squares,
circles, crosses) for NC = 1024, LC = 7 and LF = 10; Optimization
parameters are PTarget = 10−2 and Rmax = 8.

been chosen as PTarget = 10−2 using a look-up table with a

maximum rate Rmax = 8 for the coded bisection approach.

The uncoded bisection results were achieved with a target bit

error rate of PTarget = 10−3 and a maximum alphabet size

Mmax = 10 (1024-QAM). The chosen target FER PTarget is

used in the optimization of all SNRs, showing the potential

gains in terms of FER. The resulting optimum power allocation

is scaled to the current transmit power level per SNR. As

a further reference, results form [4] were added as ”BICM

loading”, where bit and power loading based on the average

mutual information of a code word and also adaptation of the

interleaver are applied.

Note, that at lower spectral efficiencies the performance of

the coded bisection is only slightly better than the uncoded

bisection approach, which is due to the applied two step

optimization. The optimal rate and power allocation only

depends on the current channel realization and the chosen

spectral efficiency. For 1 bit/s/Hz the mean code rate will either

be R̄C = 1/2 or R̄C = 2/3 with high probability, which leads

to nearly the same results as the uncoded bisection solutions

with an outer half-rate code. In the high SNR regime, though,

the gain is slightly increasing. A system applying adjustable

local code rates would perform better in such cases. With

increasing transmit rate the performance gain compared to

the uncoded bisection solution increases as well. The chosen

code rates will deviate from the half-rate code of the uncoded

bisection towards higher code rates. Especially at higher rates

significant gains can be achieved due to the adapted code rate.

In comparison to ”BICM loading”, which achieves better

results than the uncoded bisection solution, the same ob-

servations hold true. At lower rates, both bisection methods

are outperformed due to the interleaver adaptation, but with

increasing spectral efficiency adaptation of the code rate

becomes more and more important.

Fig. 6 shows results using a similar setup as before, but with

convolutional codes of constraint length LC = 7. The overall

stronger codes limit the potential gains, as can be seen by

direct comparison to Fig. 5. A longer constraint length leads

to a more robust coding scheme, which is less affected by

variations within one code word. Still, the uncoded bisection

approach hardly achieves gains indicating the importance of

a proper code rate, which is again confirmed by the ”BICM

loading” results. Similar observations can be found in many

link adaptation schemes applying outer codes with a fixed

code rate. With increasing spectral efficiency gains by pure

bit and power loading schemes tend to zero, which has been

analyzed with respect to the cdf of the bit level capacities

in [9]. Obviously, the choice of a proper code rate has to be

included in the overall optimization.

VI. CONCLUSION

The consideration of channel coding in the optimization of

communication systems is crucial to enhance the performance

and exploit the capabilities provided by channel coding. For

coded modulation system we have detailed an extension of the

bisection approach used in [1] in order to efficiently enhance

the overall error rate performance. Due to the choice of a

single outer code, it is important to pre-choose a code rate

adapted to the channel state information and optimize the bit

and power loading based on this. Unfortunately, this limits the

potential gains as most subcarriers will not be used at their

optimal rate. Future work should include the application of

codes of different code rates to achieve a finer grained control.

Nonetheless, our results show, that the bisection method using

the simulated AWGN performance of different modes is a

valid method to enhance the performance of communication

systems.
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