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ABSTRACT

One major drawback of Orthogonal Frequency Division Multiplex-

ing (OFDM) is the large peak-to-average power-ratio (PAPR), which

significantly degrades the power efficiency. In order to prevent non-

linear distortions the PAPR needs to be minimized to guarantee a

linear dynamic range of the high power amplifier. Therefore, var-

ious reduction algorithms have been proposed. However, they do

not include link adaptation requirements. Previous results show that

bit and power loading algorithms in adaptive OFDM systems fail to

meet the target error rate requirements if large time-domain peaks

occur. Hence, in this paper a joint utilization of extended constel-

lation alphabets of active subcarriers and tone reservation for peak

power reduction in adaptive OFDM systems is derived. The result-

ing linear programming (LP) problem can be efficiently solved and

the solution is lossless in terms of throughput. Furthermore, a sub-

optimal algorithm, which achieves great PAPR reduction with lower

complexity, is proposed while link adaptation is employed.

1. INTRODUCTION

The advantage of Orthogonal Frequency Division Multiplexing (OF-

DM), namely an easy equalization of high rate data streams over

frequency selective channels [1], comes along with the problem of

a large peak-to-average power-ratio (PAPR) of the transmit time-

domain signal [2]. This signal is distorted by the nonlinear char-

acteristic of the high power amplifier (HPA) usually employed at

the transmitter, which leads to a spectral regrowth. Several tech-

niques were proposed to reduce this ratio, a good overview can be

found in [3]. The simplest principle is (repeatedly) clipping the am-

plitude and apply filtering afterwards [4]. This procedure leads to

in-band distortions, which result in a bit error rate (BER) degrada-

tion. Multiple signal respresentation approaches as partial transmit

sequences (PTS) [5] or selective mapping (SLM) [6] do not degrade

the BER performance but require excessive computation of Inverse

Fast Fourier Transforms (IFFTs). In contrast, tone reservation (TR)

and tone injection (TI) methods are efficient means in terms of com-

plexity and BER requirements. TR utilizes a set of unused or re-

served subcarriers for PAPR reduction. The task is to optimize the

signal of non-data bearing subcarriers, while keeping the data sub-

carriers unchanged. Due to the orthogonality of the subcarriers no

distortions are caused. TI methods use extended constellations to

map data constellation points into equivalent points, thus altering the

data bearing subcarriers. One subclass of TI is the so-called active
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constellation extension (ACE) method, which modifies outer con-

stellation points only. Thereby, the minimum euclidean distance of

PSK/QAM symbols is kept and a BER degradation is avoided. Even

smaller BER values are achievable with this scheme [7]. The op-

posed approaches using different subcarriers motivate the effective

combination of both TR and ACE technique for PAPR reduction uti-

lizing all available subcarriers [8, 9].

Large PAPR values not only occur in single modulation alpha-

bet multicarrier systems, but also in adaptive OFDM systems, where

bit and power loading (BPL) is applied. Hence, the problem must

be considered likewise as previous results showed a performance de-

crease of link adaptation algorithms as different modulation schemes

are used for a certain output back-off (OBO) of the HPA [10]. For

PAPR reduction in adaptive OFDM systems some proposals like

in [11] suggest a redistribution of bit and power levels on each sub-

carrier until the PAPR is beneath a certain threshold. Unfortunately,

a given power constraint or a low PAPR constraint cannot be fulfilled

with such an approach. In this contribution the bit and power loading

algorithms remain unaffected and a combination of ACE and TR for

PAPR reduction is investigated. Therefore, the solution of a convex

optimization problem of such an adaptive approach is derived and

compared with a suboptimal but less complex algorithm.

The remainder of the paper is organized as follows. In Sec-

tion 2 the OFDM system is described and the PAPR reduction is

stated. Furthermore, the constellation extension and tone reserva-

tion techniques are reviewed and the convex optimization formula-

tion is given. The solution of the optimization problem is derived

in Section 3 and an extended gradient-project method is presented.

Simulation results are shown in Section 4 and a conclusion is given

in Section 5.

Throughout the paper we use the following notation: Capital

boldface letters denote frequency-domain column vectors or gen-

eral matrices and small boldface letters describe column and time-

domain vectors. The conjugate and the transpose are denoted by (·)∗
and (·)T

. Furthermore, 0α×β , Iα×β are the α×β all zero and all ones

matrices/vectors, respectively. ‖·‖
ℓ

describes the ℓ-norm, |·| stands

for the cardinality of a set or the absolute value, whereas sets are

denoted by caligraphic letters.

2. SYSTEM DESCRIPTION

2.1. OFDM System and PAPR

In an OFDM system, where the bandwidth B is divided into Nc

orthogonal subcarriers, the transmit baseband signal with Nu non-

data bearing and Na = Nc − Nu data bearing subcarriers can be
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Fig. 1. Exemplary active constellation extension for QPSK (left) and

16-QAM (right) with zero symbols exploitable with TR techniques

obtained using the IFFT

xn =
1√
Nc

Nc−1
∑

k=0

Xk exp

(

j2π
kn

Nc

)

, (1)

for time index n = 0, . . . , Nc − 1, where Xk is the frequency-

domain symbol of subcarrier k modulated using PSK/QAM with

maximum modulation alphabet size |M|max. For ease of notation

we dropped the OFDM symbol index. Then, x = [x0, . . . , xNc−1]
T

is the time-domain symbol vector at the IFFT output, whose ele-

ments, due to the central limit theorem, can be modeled as truncated

zero-mean Gaussian random variables. This leads to high peak val-

ues especially for an increasing number of subcarriers. Usually, an

IFFT of a zero-padded input data vector of length wNc is applied,

where w is the oversampling factor. All peaks of the time-domain

signal can be captured if an oversampling factor of w ≥ 4 is used.

Then, its corresponding discrete PAPR closely approximates that of

the continuous-time signal. In this work all algorithms perform at

Nyquist sampling rate, whereas the PAPR of the oversampled signal

is measured. Consequently, the PAPR for such an OFDM system is

defined as

PAPR (x) =
‖x‖2

∞

E
{

‖x‖2
2

}

/wNc

, (2)

where E {·} denotes the expectation and ‖x‖2
∞ defines the peak

value max
x

|xk|2.

2.2. Convex Formulation

The PAPR defined in (2) can be significantly reduced, if the transmit

signal x is modified by an additive time-domain signal c ∈ R
Nc×1,

which is optimized with respect to ACE and TR constraints such that

the corresponding PAPR

PAPR (x, c) =
‖x + c‖2

∞

E
{

‖x + c‖2
2

}

/wNc

(3)

is minimized. The idea of ACE is shown in Fig. 1, where the con-

stellation is extended on the outer points such that the minimum eu-

clidean distance is not reduced. In the center of the depicted con-

stellations some zeros are identifiable. These points correspond to

the reserved/unused subcarriers. As there are no constellation re-

strictions for these subcarriers they can be used for TR techniques,

meaning that these points can be extended in any direction without

decreasing the bit error rate performance.

ℑ{x}

ℜ{x}

t

Fig. 2. Approximation of the power restricted complex envelope

Following the principles in [2] and [12] the optimization prob-

lem using the ACE or/and TR technique can be written as

minimize
c

‖x + c‖∞ = minimize
C

‖x + FC‖∞ , (4)

where C is the corresponding frequency-domain vector of the ad-

ditive signal and F denotes the IDFT matrix of size Nc×Nc with

elements fn,k =
(

1/
√

Nc

)

exp (j2πkn/Nc). This convex problem

can be interpreted as minimizing the squared magnitude of the re-

sulting signal with respect to c. Unfortunately, this is a minimization

task in the complex plane, which results in a quadratically constraint

quadratic program (QCQP) [8]. Such a problem is costly to solve.

Hence, we transform this problem into a real-valued problem and op-

timize the magnitude of real and imaginary part independently. As

real and imaginary part are dependent optimization variables, this

leads to a suboptimal solution with a remaining small error.

Fig. 2 shows how this real-valued approach approximates the

optimal solution circle of the power restricted complex envelope

(dashed line), which depicts the maximum achievable peak power

reduction resulting from the optimum complex optimization prob-

lem. The real-valued approach packs all time-domain samples in an

outer square, where the maximum possible error is indicated by the

two dots. The variable t will be explained in Sec. 3. The circle can

be closer approximated by using additional phase-shifted versions of

the time-domain signal block. This in turn escalates the amount of

constraint equations especially in a link adaption scenario and slows

down the convergence speed of the resulting algorithm [8]. This is a

quite important aspect as the link adaption algorithms already intro-

duce processing delays at the transmitter. Consequently, assume the

real-valued system variables

XR = [ℜ{X}ℑ{X}]T ∈ R
2Nc×1

(5a)

xR = [ℜ{x}ℑ {x}]T ∈ R
2Nc×1

(5b)

CR = [ℜ{C}ℑ{C}]T ∈ R
2Nc×1

(5c)

FR =

[

ℜ{F} −ℑ{F}
ℑ {F} ℜ{F}

]

∈ R
2Nc×2Nc , (5d)

where XR is a real-valued ASK symbol vector with alphabet size√
M, xR the equivalent time-domain represenation, CR the frequency-

domain correction term and FR the real-valued presentation of the

IDFT matrix F. Then, we can rewrite the optimization problem as

minimize
CR

‖xR + FRCR‖∞ , (6)

which can now be written as a linear programming (LP) problem

[2, 13].



3. JOINT OPTIMIZATION

3.1. Algorithm

The combination of ACE and TR introduces additional constraints

to the optimization problem. For all Nu non-data bearing subcarri-

ers there are no restrictions on the feasible region of the complex

symbol after optimization. For all other Na active carriers only

those symbols corresponding to a corner or edge point of the se-

lected complex symbol alphabet M are considered. In summary,

this implies that only outer constellation symbols of the ASK sig-

nal XR are incorporated in the following optimization process of

ACE. The beforehand determined set of ASK symbol indices used

for optimization shall be indicated by Ic =
[

i1, . . . , i|Ic|

]

. It is

worth mentioning that the zero amplitude symbols of the non-data

bearing subcarriers are also included in Ic. Hence, by optimizing

with respect to the constraints on Ic we jointly optimize the addi-

tive signal c including ACE and TR subcarriers. If we exclude the

columns of the disregarded ASK symbols from the IDFT matrix such

that F̃R =
[

fi1 , fi2 , . . . , fi|Ic|

]

∈ R
2Nc×|Ic| and similarly arrange

all frequency-domain correction symbols of the considered symbols

in C̃R =
[

Ci1 , Ci2 , . . . , Ci|Ic|

]T

∈ R
|Ic|×1, then FRCR = F̃RC̃R

holds. If we then upperbound the objective function in (6) by a cer-

tain value t we can reformulate the optimization problem to

minimize t (7a)

subject to

∣

∣

∣
xR,k + F

(k)
R C̃R

∣

∣

∣
≤ t ∀ k ∈ Ic , (7b)

where F
(k)
R denotes the k-th row of matrix FR. The element-wise

inequality constraints for the absolute values in (7b) can be written

in matrix form
[

F̃R I2Nc×1

−F̃R I2Nc×1

] [

C̃R

t

]

≥
[

−xR

xR

]

, (8)

whereas the set limitation in (7b) can be stated with respect to the

feasible regions of the transmit symbols

SkCR,k ≥ 0 ∀ k ∈ Ic (9a)

CR,k
!
= 0 ∀ k /∈ Ic , (9b)

where Sk = sgn {XR,k} ∈ {−1, 0, +1} is the sign of the kth ASK

symbol. The constraints of inner constellation points and the uncon-

sidered real and imaginary parts of edge points of the QAM symbols

are given in (9b). These constraints can be easily fulfilled if they are

excluded from the optimization problem. The inequality constraints

in (9a) can again be written in matrix form with element-wise in-

equality

SC̃R ≥ 0|Ic|×1 . (10)

In (10) the sign variables are arranged in a diagonal matrix such that

S = diag
{

S1, . . . , S|Ic|

}

. At last, by defining the auxiliary vectors

d=
[

01×|Ic| 1
]T∈R

|Ic|+1×1 and yR =
[

C̃R t
]T

∈R
|Ic|+1×1 the op-

timization problem in (7) becomes

minimize d
T
yR (11a)

subject to ARyR ≥ bR , (11b)

with matrix AR and vector bR given by

AR =





F̃R I2Nc×1

−F̃R I2Nc×1

S 0|Ic|×1



 and bR =





−xR

xR

0|Ic|×1



 . (12)

This is a LP problem [13] with 2Nc + 1 variables and 4Nc + |Ic|
constraints. The minimum solution value of t describes the size of

the approximate square as shown in Fig. 2. In our investigations this

LP was solved via the CVX toolbox [14] or the more efficient iter-

ative Newton method in [15], which works considerably well with

a large number of constraints. Motivated by the reduced effective-

ness of ACE for higher order modulations [12], one may introduce

a restriction of the maximum constellation size, for which the ACE

procedure is applied. Then, the number of constraints can be further

reduced with the drawback of a more suboptimal solution.

3.2. Extended Gradient-Project Approximation (EGPA)

One possible alternative method for approximating the previously

described LP is using a gradient-project approach like in [12] for

the ACE component of Sec. 3 and extend it with an update rule for

the additive correction term related to unused subcarriers [16]. This

combines the properties of both iterative schemes in a single proce-

dure. Therefore, we propose the following algorithm:

1. For each OFDM symbol obtain the acceptable extension di-

rections depending on the modulation alphabet of each sub-

carrier allocated by the link adaptation algorithm and store

them together with the subcarriers indices of the non-data

bearing subcarriers. The indices of non-data bearing carriers

shall be enclosed in the set Iu. Apply an IFFT to the transmit

symbol vector X. Set i = 0, where i is the iteration index.

2. Clip the resulting signal x(i) to a certain magnitude threshold

T to obtain the clipped signal x̄.

3. Compute the clipped signal portion

cclip = x̄ − x
(i)

(13)

and apply an FFT to obtain the frequency-domain samples

Cclip.

4. For the ACE part of this scheme keep only those components

of Cclip, which belong to allowable extension directions of

the active subcarrier constellations. Store all components of

Cclip, which belong to non-data bearing subcarriers, into Casus

such that the elements are

Casus,k =

{

Cclip,k k ∈ Iu

0 else
. (14)

Set the components of CTR in Cclip and all remaining parts of

Cclip to zero.

5. Obtain the time-domain signals cTR and c by the IFFT of CTR

and Cclip, respectively.

6. Determine a smart gradient step size µ and compute the up-

dated time-domain signal

x
(i+1) = x

(i) + µcACE − νcTR. (15)

Here, the gradient step size µ is chosen as suggested for the

smart gradient method in [12]. The factor ν (ν =
√

NC/Nu

in this paper) may also be optimized [16].

7. If a desired PAR reduction is achieved or a maximum iteration

number imax is reached, stop. Otherwise set i = i + 1 and

goto 2).



It is worth mentioning that this algorithm introduces additional IFFT

and FFT operations, which in turn slightly increases the complexity

compared to the original OFDM system. For high spectral efficien-

cies all subcarriers are data bearing subcarriers especially if a maxi-

mum modulation alphabet size is set. Then this algorithm inherently

reduces to the one in [12].

4. SIMULATION RESULTS

The performance of the described schemes is compared in this sec-

tion. The adaptive, uncoded single-antenna OFDM system with an

exemplary bandwidth of B = 5 MHz was simulated with Nc = 256
subcarriers. In addition, the number of non-data bearing subcar-

riers is determined by a bit and power loading algorithm, whose

maximum allowed modulation alphabet size was set to |M|
max

=
256 (QAM). Here, we restrict ourselves to the loading algorithm of

Krongold [17]. It is worth mentioning that several other loading al-

gorithms were proposed, which allow for utilization of our approach

especially in coded scenarios [18, 19]. Depending on a predefined

spectral efficiency η a total number of bits can be allocated to the

subcarriers. For the BER analysis the frequency-domain channel co-

efficients Hk ∈C result from the frequency-selective time-domain

channel coefficients h(ℓ), 0≤ℓ≤L−1, whose elements are i.i.d.

complex Gaussian distributed according to NC (0, 1/L). L denotes

the number of uncorrelated equal power channel taps, where L = 6
is used. Hence, the frequency-domain channel coefficients are ob-

tained via

Hk =
1

L

L−1
∑

ℓ=0

h(ℓ) e−jΩkℓ , (16)

where Ωk =2πn/NC , 0≤k≤NC − 1 are the equidistant sampling

frequencies. Hk is known at the transmitter and is assumed to be

constant over one OFDM symbol. A sufficiently long cyclic prefix

of length 8 is selected.

Furthermore, the power of the noise on all subcarriers is fixed to

σ2
n = 1. Hence, the signal-to-noise ratio is exclusively defined by

the total available transmit power P . This total power is distributed

according to the bit and power loading algorithm, where no power

may be assigned to ”bad” subcarriers. If these subcarriers are later

on used for TR techniques, then the available powers of the active

subcarriers are rescaled by (Nc − Nu)/Nc and thus the remaining

available transmit power (1 − (Nc − Nu)/Nc) · P is equally dis-

tributed among the previously free subcarriers. The oversampling

factor is w = 4 and an amplifier is employed in the simulation chain

as this device has a direct impact on the BER and the spectral leakage

due to clipping effects. The well-known Rapp model as in [20] with

parameter p = 2 and an input back-off (IBO) of 3 dB was applied.

In Fig. 3 the complementary cumulative distribution function

(CCDF) of the PAPR is shown. There, the curves indicate the proba-

bility that the PAPR of one OFDM symbol exceeds a certain thresh-

old, i.e.,

CCDF (PAPR (x, c)) = Pr (PAPR (x, c) > γ) , (17)

where Pr (·) denotes probability and γ is the threshold in dB. The

PAPR values are calculated according to (3). For the gradient-project

method the clipping ratio was fixed to 3 dB and the maximum iter-

ation number was either imax = 3 or imax = 9. Results are shown

for a spectral efficiency of η = 2 bit/s/Hz. As can be seen from

the CCDF results a PAPR reduction of around 2 dB is achieved with

the joint ACE and TR technique if the square approximation is used.

The gradient-project method with 3 iterations is able to achieve al-

most a similar behavior with a gap less than 0.7 dB compared to the
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Fig. 3. PAPR CCDFs of different schemes with Nc = 256 subcarri-

ers and a spectral efficiency of η = 2 bit/s/Hz

LP solution. Further iterations are not justified as the performace

gain of around 0.2 is negligible compared to the increased number

of IFFT/FFT computations.

Regarding the uncoded BER performance incorporating the HPA

in Fig. 4 a performance gain of the joint ACE/TR technique is ob-

tained due to the reduced amount of samples, which are influenced

by the nonlinear region of the HPA and due to the performance gain

of ACE coming from the increased euclidean distance of some outer

constellation symbols [7]. The small power loss stemming from the

exploitation of previously unused carriers was compensated such

that a gain of approx. 4 dB at 10−3 BER is visible. The results

for the EGPA are comparable to the BER performance of the OFDM

system without PAPR reduction. A small gain is obtained in the

high SNR region, but no performance reduction occurs, which cor-

responds to the idea of ACE and TR. Even for the BER performance

the amount of EGPA iterations can be kept small as no significant

increase is apparent.

Concluding the comparison, the normalized average power spec-

tral density (PSD) is shown in Fig. 5. It can be seen that the pro-

posed schemes are also able to decrease the out-of-band radiation

up to 2.5 dB compared to the original OFDM-BPL spectral mask,

where the LP solution still is superior to the EGPA algorithm, but

with marginal differences. Hence, the gradient-project algorithm is

especially suited for suppression of out-of-band components.

5. CONCLUSION

In this paper, we derived a joint optimization formulation of ACE

and TR, which can be efficiently solved as a LP problem using New-

ton methods. To avoid large processing delays in combination with

bit and power loading algorithms suboptimal solutions are preferred.

Therefore, the number of constraints was limited for the PAPR re-

duction in the complex baseband case. An extended gradient-project

method combining ACE and TR in an iterative procedure was intro-

duced, which shows quite good performance at moderate complex-

ity.
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