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ABSTRACT

Adaptive communication is an important topic to enhance the

capabilities of future communication systems. Especially in

combination with Orthogonal Frequency Division Multiplex-

ing (ODFM) bit and power loading schemes have been de-

vised to enhance the transmit rate of communication systems.

The consideration of channel coding in the optimization is an

obvious requirement. In the past, though, mainly uncoded

systems have been investigated allowing for further enhance-

ments. In this paper we propose a new scheme to adapt code

rate and modulation by solving the convex optimization prob-

lem based on a bisection approach in order to maximize the

achievable data rate at a fixed target error rate.

1. INTRODUCTION

Orthogonal Frequency Division Multiplexing is a key tech-

nology to efficiently overcome frequency selective channels.

Especially in wireline communications, but also in several

wireless standards, OFDM has been widely applied. Based

on the orthogonality of the subcarriers of OFDM systems sev-

eral approaches to adapt communication to the current chan-

nel conditions have been proposed. However, these so called

bit and power loading algorithmsmostly focus on the uncoded

bit error rate (BER), which can be described analytically for

QAM and PSK constellations. Adaptive systems in general

have been studied extensively in the past years, but the as-

pect of practical channel coding is still often neglected for the

sake of analytical or purely information theoretical solutions.

Several efficient solutions have been proposed to the uncoded

optimization problem, e.g. [1, 2], but only recently the regard

of channel coding has become a topic.

The specific problem of coded bit and power loading for

single antenna OFDM systems has been addressed by Li et

al. [3], proposing a solutionmotivated by bit interleaved coded

modulation (BICM) [4] capacity results. Similarly, Sankar et

al. [5] proposed a scheme based on a simple approximation
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of the BICM capacity and derived an appropriate waterfill-

ing solution to that problem. Another approach quite akin

to [3], but based on SNR thresholds, has been proposed by

Stiglmayr et al. [6] to optimize the performance of an OFDM

system, where loading is only applied to groups of subcarri-

ers called chunks. For MIMO system the authors have pro-

posed an adaptive algorithm based on an approximation of

the coded modulation capacity regarding both error rate and

transmit rate optimization [7].

In this paper we propose a new scheme, which expands

the bisection approach originally used by Krongold et al. [2]

to adapt power, modulation and the code rate of a fixed chan-

nel code (e.g., convolutional or turbo code) based on a set of

rate-power points, which are derived from AWGN simulation

results of the applied code. This efficient solution is compared

to other uncoded and coded loading approaches and is shown

to achieve superior performance in comparison to other ap-

proaches.

The remainder of this paper is organized as follows. The

system model used throughout the paper is introduced in Sec-

tion 2, in Section 3 the system performance, which is used in

Section 4 to obtain an optimization algorithm is characterized.

In Section 5 performance results for several codes are shown

and compared to other known loading approaches. Finally, in

Section 6 this paper is concluded.

Notation

In the following, vectors are denoted by lower case bold let-

ters. Furthermore, probabilities are denoted as P. NC

(

µ, σ2
)

describes a complex Gaussian distribution with mean µ and

variance σ2.

2. SYSTEM MODEL

We consider an equivalent baseband model of an OFDM sys-

tem with NC subcarriers with perfect knowledge of the chan-

nel state information at both transmitter and receiver. Thus,

the system model in frequency domain is

yk = hk · √pk · dk + nk , (1)

where hk denotes the channel coefficient in frequency do-

main on subcarrier k = 1, · · · , NC and pk, dk, nk and yk
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Fig. 1. System Model

denote the transmit power, the transmit symbol, the Gaussian

noise and the receive signal, respectively. The overall trans-

mit power is given by P =
∑NC

k=1 pk and the power of the

noise nk ∼ NC(0, σ2
n) is fixed to σ2

n = 1. The NC fre-

quency domain channel coefficients are determined by hk =
∑LF −1

ℓ=0 h̃(ℓ)e−jΩkℓ, where the LF taps of the time domain

channel are h̃(ℓ) ∼ NC(0, 1/LF ) and Ωk = 2π/NC (k − 1)
denotes the k-th normalized equidistant sampling frequency.

2.1. Modulation

Throughout this paper transmit symbols stemming from M -

QAM (
√

M -ASK) modulation alphabets A with binary re-

flected gray mapping [8] are considered . To each subcarrier

k an individual alphabet of cardinality Mk = |Ak| may be

assigned. Soft-Demapping via a-posteriori-probability (APP)

detection is used to supply soft information to the decoder.

As any square M -QAM can be represented by two
√

M -

ASK without loss, we will constrain the following descrip-

tions to ASK constellations. An expansion to QAM constella-

tions can easily be obtained by simply halving the power con-

straint andmaximum rate while doubling the resulting powers

and rates.

2.2. Coding

Fig. 1 shows the general system model including the chan-

nel code and interleaving. Two codes are applied, i.e., non-

systematic non-recursive convolutional encoders of ratesRC ∈
{1/4, 1/3, 1/2, 2/3, 3/4}and constraint lengthsLC ∈ {3, 7}.

In all cases, the code word length is fixed to the number

of bits in one OFDM symbol, leading to longer code words

for higher data rates. Thus, no time diversity is exploited.

A BCJR algorithm has been used for soft-decoding and the

interleaver was designed randomly.

3. CODED PERFORMANCE

The bit error rate performance of
√

M -ASK neglecting any

channel code is a well known property, which can be de-

scribed in dependence of the signal-to-noise ratio γ (SNR)

by

Pb =
2

log2 M

(

1 − 1√
M

)

erfc

(

√

3

M − 1
γ

)

. (2)
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Fig. 2. FER vs. Eb/N0 comparison of some combinations of√
M -ASK with log2(

√
M) = 2, 3, 4 and convolutional codes

RC ∈ {1/4, 1/3, 1/2, 2/3} (left to right) with LC = 3 and

frame length LN = 1024.

Accordingly, the frame error rate (FER) is obtainable given a

certain frame length LN (number of channel uses) as

Pf = 1 − (1 − Pb)
LN log

2

√
M , (3)

which can be used to derive the SNR γ̂ required to achieve a

given bit Pb or frame error rate Pf . This is the basis for many

known bitloading algorithms, e.g., [2]. However, these results

are limited to uncoded systems. To capture the behavior of

the whole system - including an appropriate channel code -

(2) and (3) are not sufficient. One way to obtain a measure of

quality is the simulated performance of the system.

In order to characterize the SNR γ, which is necessary

to achieve a given error rate performance Pf , simulation of

a system with equivalent block length LN = NC and an

AWGN channel is sufficient. The effective subcarrier SNR

given by some assigned power pk and the channel power |h|2
can then be compared to these thresholds to identify suitable

modes. This AWGN assumption is optimistic in the sense,

that individual channel properties (Rayleigh fading, correla-

tion) have been compensated properly, but offers a good indi-

cation which SNR is needed at a specific data rate on a sin-

gle subcarrier to support a target frame error rate. Ergodic

Rayleigh fading would lead to far too pessimistic thresholds

because of subcarriers with very low SNRs. Such subcarri-

ers will be compensated for in a perfect adaptive system by

the assignment of more power, a different modulation and

stronger coding.

Fig. 2 shows the FER results of Monte-Carlo simulations

for
√

M -ASK constellations up to
√

M = 24 and a variety of

code rates versus Eb/N0. It is quite clear, that only a subset



of combinations will actually be used due to the fact, that at

a fixed rate one code-modulation combination will lead to the

best performance, e.g., 4-ASK with a half rate code vs. 16-

ASK with a quarter rate code achieves the same performance

at a much lower Eb/N0 at rate 1 bit/s/Hz (circles).

Based on these simulation results, the system performance

can be characterized as will be shown in Section 4.

4. RATE OPTIMIZATION

To enhance the data rate per OFDM symbol for the system

defined in Section 2 we have to solve the well known opti-

mization problem

maximize RTotal =

NC
∑

k

rk

subject to
NC
∑

k

pk = P and Pf < PTarget , (4)

where rk = log2(
√

Mk)RC,k is the rate of subcarrier k given

by a local code rate RC,k and modulation alphabet of cardi-

nality
√

Mk and pk is the transmit power. The frame error

rate constraint PTarget ensures a certain quality of service, but

is also a requirement to relate the powers pk to the achiev-

able rates rk. From the results of Section 3 we can con-

clude, that at a target error rate Ptarget each combination of

code and modulation leads to a specific power requirement

to achieve the corresponding rate. Fig. 3 shows all possible

rate-power pairs at a FER of PTarget = 10−2 with maximum

rate of Rmax = 4. Included are all points found by Fig. 2 and

uncodedmodes following (3) to consider higher SNRs, where

coding may not be necessary any more. This gives the set of

all rate-power points S = {(Ri, γ̂i)|f√Mi,RC,i
(pi) = Ptarget},

where fMi,RC,i
denotes the bit or frame error rate function,

e.g., shown in Fig. 2, parametrized by the transmission pa-

rameters and the power. The SNR γ̂ for the real valued system

is defined as γ̂k = RC,k log2(
√

Mk)
Eb,k

N0/2
.

4.1. Convexity

In order to solve problem (4) efficiently via the bisection method,

the set S has to be convex. This whole set, though, is not a

convex one. However, standard methods to identify the con-

vex hull of a set of points can be used to build a convex subset

Q ⊂ S, e.g. [9], which is indicated by the solid line in Fig. 3.
The resulting convex set of rate-power points is shown in

Table 1. Based on such an easily storable look-up table, which

has to be created once for a specific frame length and set of

modes, the rate of an OFDM symbol can be optimized. More

specifically, the look-up table has to return the mode with the

greatest rate still being feasible. Feasibility in the bisection

approach is connected to the slope of the rate-power curve,

which can be calculated as δR/δΓ̂ with R the vector of all

SNR γ̂
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Fig. 3. Rate-power pairs at a FER of 10−2, the set S is shown

by ’x’ (convolutional code LC = 3), ’o’ (uncoded) and the

convex subset Q is visualized by the solid line

rates on the convex hull and Γ̂ the vector of the respective

SNRs.

Table 1. Look-up table for LN = 1024, LC = 3 and

PTarget = 10−2

Rate γ̂ RC log2

√
M

0.25 0.88 0.25 1

0.33 1.17 0.33 1

0.50 1.84 0.50 1

0.67 2.83 0.67 1

0.75 3.40 0.75 1

1.50 16.36 0.75 2

2.00 47.49 1.00 2

2.25 66.22 0.75 3

3.00 202.57 1.00 3

4.00 825.51 1.00 4

4.2. Coded Bisection Approach

The stated optimization problem is well known and has been

solved for the uncoded case by several approaches. One very

efficient way to find the optimal solution given the Lagrangian

formulation of the convex optimization problem (4) is the bi-

section approach, which has been applied to the uncoded bit

and power loading problem by Krongold et. al [2]. The La-

grangian of (4) with respect to the equivalent minimization

problem is

J(λ) = −
NC
∑

k=1

rk + λ

(

NC
∑

k=1

pk − P

)

. (5)



Require: look-up table L(η) → r, p
Plow = 0, Rlow = 0

Phigh = max(Γ̂)
NC
P

k=1

1/|hk|
2, Rhigh = NCRmax

loop

λ =
Rhigh−Rlow

Phigh−Plow
{rate-power slope}

for k = 1 to NC do

η = λ/|hk|
2 {modify with channel}

rnew,k = L(η) {look-up best feasible rate}
pnew,k = L(η)/|hk |

2 {get needed power}
end for

Rnew =
NC
P

k=1

rnew,k {overall Rate}

Pnew =
NC
P

k=1

pnew,k {overall Power}

if Pnew == Phigh or Pnew == Plow then

Set p = plow and r = rlow
END LOOP

else if Pnew == P then

Set p = pnew and r = rnew
END LOOP

else if Pnew < P then

Plow = Pnew, Rlow = Rnew

rlow = rnew, plow = pnew

else

Phigh = Pnew, Rhigh = Rnew

end if

end loop

return Rates r and Powers p

Fig. 4. Coded Bisection approach to rate optimization

The optimum value λ∗ maximizing the rate given the total

power P can then be found via the algorithm shown in Fig. 4,

wherep = [p1, . . . , pNC
]T denotes the vector of all subcarrier

powers. The variable λ can be interpreted as the slope of the

rate-power curve at the optimal point leading to a certain total

power and rate. Starting with the two extremes Plow, Rlow (no

power and rate) and Phigh, Rlow (maximum power and rate)

the bisection approach is used to calculate a new slope λ to

the rate-power curve. Based on this, for each subcarrier the

slope is modified by the power of the channel coefficient to

find the supported rates. The slope λ is then adjusted in each

iteration by the newly calculated power and rate boundaries

testing these hypotheses until the overall power constraint is

fulfilled (for more details see [2]).

The look-up table L(η) is constructed such that the great-

est rate ri is chosen, where η < δR/δΓ̂|ri
is still fulfilled.

Furthermore, the vector of applied rates r directly defines

modulation and code rate (e.g. Table 1). However, the ap-

plication a specific code rate is beyond the scope of this pa-

per. Therefore, an average code rate R̄C = 1
NC

∑NC

k=1 RC,k is

used to identify the best suited code, where the greatest avail-

able code rate smaller than R̄C is applied leading to a slight

loss in performance.
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Fig. 5. FER and Rate vs average power per subcarrier

P/NC for convolutional codes of constraint length LC = 3;
NC = 1024 subcarriers, LF = 10 channel taps, target FER

of PTarget = 10−2

5. RESULTS

Assuming that erroneous frames would be retransmitted in a

communication system applying some form of automatic re-

peat request (ARQ), the following rate results are calculated

considering only error free frames. For the sake of simplic-

ity, this approach does not consider any form of hybrid ARQ

schemes, were transmitted bits of an erroneous frame would

not simply be thrown away.

Fig. 5 shows the FER and rate results versus the aver-

age subcarrier SNR for a convolutionally coded OFDM sys-

tem with NC = 1024 subcarriers, constraint length LC =
3, LF = 10 channel taps and a target frame error rate of

PTarget = 10−2 with the maximum rate Rmax = 4 bit/s/Hz

per real dimension. Due to the choice of a fixed code rate

over one OFDM symbol and a maximum modulation of 16-

ASK per dim., however, the maximum overall rate may be

Rmax,ov = 2 · 2 · 3/4 = 6 (16-ASK per dim. with rate 3/4

code). Besides the presented Coded Bisection approach two

additional adaptive algorithms have been depicted. The orig-

inal uncoded bisection solution from [2] with a target bit er-

ror rate of Pb,Target = 0.02 and Algorithm 3 from [3] (in the

following “Li/Ryan”) with a mutual information threshold of

MI = 0.92, which corresponds to the target FER. Both use a

code of rate RC = 1/2 with a maximum modulation of 16-

ASK, hence an overall maximum rate of 4 bits/s/Hz is achiev-

able. Furthermore, the non-adaptive result is depicted as a

baseline to show the achieved gains of coded bit and power

loading.

Clearly, the adaptation of code rate and modulation offers

higher flexibility to cope with a given channel situation than
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Fig. 6. FER and Rate vs average power per subcarrier

P/NC for convolutional codes of constraint length LC = 7;
NC = 1024 subcarriers, LF = 10 channel taps, target FER

of PTarget = 10−2

a fixed code rate scheme. Nonetheless, all adaptive schemes

achieve significant rate gains w.r.t. rate. Note, that “Li/Ryan”

offers no apparent enhancement in comparison to the uncoded

bit and power loading. Furthermore, the target FER is main-

tained quite well with one exception. At high SNR, even

though the maximum assignable rate is not yet achieved, the

FER of our scheme decreases rapidly. This effect can be ex-

plained by the fixed frame code rate. Specifically, the code

rate will be limited to the maximum of RC = 3/4 even if

the mean code rate is actually higher (e.g., nearly 1). Accord-

ingly, the error protection capabilities exceeds the one result-

ing from the optimization lowering the transmit rate consid-

erably.

Fig. 6 shows the results for the same system with convo-

lutional codes of constraint length LC = 7, resulting in better
error protection. The original uncoded bisection solution uses

a target bit error rate of Pb,Target = 0.06 and “Li/Ryan” a mu-

tual information threshold of MI = 0.8. Basically, the non-

adaptive throughput is higher compared to LC = 3 due to the

stronger error protection capability, which allows for a higher

rate at the same target FER. Overall gains due to adaptivity

are slightly lessened because of the limited degrees of free-

dom the system offers. A stronger channel code makes better

use of the existing frequency diversity, thereby limiting the

possible gains. Especially at high SNR, though, the stronger

error protection leads to different results than for LC = 3, ac-
tually coping much better with the code rate choice. Quite

obviously the overall code rates will be lower at the same

SNRs in comparison to LC = 3, because the look-up table

will contain less uncoded modes owing to the stronger error

protection.

6. CONCLUSION

The proposed approach is a very efficient means to enhance

the rate of BICM-OFDM systems as the required look-up ta-

ble can be computed beforehand. In contrast to [3], which

works well, but does not lead to higher gains in comparison

to the uncoded bit loading solution [2], our scheme achieves

considerable gains especially in the high SNR range. The lim-

iting factor for fixed code rate solutions is the highest achiev-

able data rate given by code rate and maximum modulation

size. Using a variety of code rates and considering uncoded

transmission modes offers a higher flexibility for adaptation.

Especially in the case of weaker convolutional codes uncoded

modulation is a feasible solution allowing for substantially

higher rates in the optimization. Fixing the code rate for one

code word, though, again limits the performance and pro-

duces some side effects for all codes at higher SNRs. A finer

grained control over the code rate would help to compensate

for that, but that may not always be possible due to the nature

of the applied channel coding. Another straightforward solu-

tion is offered by a two step loading, fixing the code rate in the

first step and optimizing the loading with regard to this code

rate in the second step. The overall complexity is of course

doubled, as the algorithm has to be run twice with different

look-up tables. Nonetheless, it is still a very efficient means

to adapt the transmission of practical systems with respect to

the actual performance of the applied channel codes.
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