Deep Learning based End-to-End Communication Systems without a Channel Model

Tutor: Edgar Beck
Type of Thesis: Master's thesis (MSc)
date of end: 02/2020
Student: Kristina Kr├╝ger
Status: finished
ANT-shelfmark:
Abstract:

Motivation:

Motivated by the fact that the innovative machine learning based autoencoder design of communication systems requires a well-known system model, model-free approaches for deployment in adaptive and real-time applications are of interest. Some recent ideas comprise channel estimation using Variational Generative Adversarial Networks and reinforcement learning for training of a communication system.

Goal:

The aim of this thesis is to investigate one approach to overcome the mentioned limitation and to implement it in a modern deep learning library. In the end, the performance should be evaluated in practice with real data on a software defined radio platform.

Requirements:

In order to work on this thesis, a successful participation in the lectures Wireless Communications and Communication Technologies is required. Also, a solid understanding in linear algebra, optimization theory and stochastics is needed. Programming skills in Python are advantageous but not necessary.

Last change on 26.02.2020 by E. Beck
AIT ieee GOC tzi ith Fachbereich 1
© Department of Communications Engineering - University of BremenImprint / Contact