Minimum Measurement Deterministic Compressed Sensing based on Complex Reed Solomon Decoding

Authors: T. Schnier, C. Bockelmann, A. Dekorsy

Compressed Sensing (CS) is an emerging field in communications and mathematics that is used to measure few measurements of long sparse vectors with the ability of lossless reconstruction. In this paper we use results from channel coding to design a recovery algorithm for CS with a deterministic measurement matrix by exploiting error correction schemes. In particular, we show that a generalized Reed Solomon encodingdecoding structure can be used to measure sparsely representable vectors, that are sparse in some fitting basis, down to the theoretical minimum number of measurements with the ability of guaranteed lossless reconstruction, even in the low dimensional case. 

Document type: Conference Paper
Publication: Budapest, Hungary, 29. August - 2. September 2016
Conference: 24th European Signal Processing Conference (EUSIPCO 2016)
MMVRS.pdf254 KB
Last change on 16.03.2017 by
AIT ieee GOC tzi ith Fachbereich 1
© Department of Communications Engineering - University of BremenImprint / Contact