The Information Bottleneck Method: Fundamental Idea and Algorithmic Implementations

Autor: D. Wübben

The quantized representation of signals is a general task of data processing. For lossy data compression the celebrated Rate-Distortion theory provides the compression rate in order to quantize a signal without exceeding a given distortion measure. Recently, with the Information Bottleneck method an alternative approach has been emerged in the field of machine learning and has been successfully applied for data processing. The fundamental idea is to include the original source into the problem setup when quantizing an observation variable and to use strictly information theoretic measures to design the quantizer. This paper introduces this framework and discusses algorithmic implementations for the quantizer design.

Dokumenttyp: Konferenzbeitrag
Veröffentlichung: ISBN 978-90-74249-29-4, Boppard, Deutschland, 21. - 23. Juni 2017
Konferenz: 10th Asia-Europe Workshop on Concepts in Information Theory (AEW 2017)
AEW_2017_IBM_Wuebben.pdf200 KB
Zuletzt aktualisiert am 27.06.2017 von D. Wübben
AIT ieee GOC tzi ith Fachbereich 1
© Arbeitsbereich Nachrichtentechnik - Universität BremenImpressum / Kontakt